找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Albert Bifet,Michael May,Myra Spiliopoulou Conference proceedin

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:00:53 | 只看該作者
Listener-Aware Music Recommendation from Sensor and Social Media Dataindings on the topics of tailoring music recommendations to individual listeners and to groups of listeners sharing certain characteristics. We focus on two tasks: . (also known as serial recommendation) using sensor data and . using social media data.
42#
發(fā)表于 2025-3-28 19:29:22 | 只看該作者
Logic-Based Incremental Process Miningful framework for supporting all of the above. This paper presents a First-Order Logic incremental method for inferring process models. Its efficiency and effectiveness were proved with both controlled experiments and a real-world dataset.
43#
發(fā)表于 2025-3-29 02:35:31 | 只看該作者
978-3-319-23460-1Springer International Publishing Switzerland 2015
44#
發(fā)表于 2025-3-29 03:05:54 | 只看該作者
Machine Learning and Knowledge Discovery in Databases978-3-319-23461-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
45#
發(fā)表于 2025-3-29 08:35:58 | 只看該作者
46#
發(fā)表于 2025-3-29 12:40:49 | 只看該作者
Bayesian Hypothesis Testing in Machine LearningMost hypothesis testing in machine learning is done using the frequentist null-hypothesis significance test, which has severe drawbacks. We review recent Bayesian tests which overcome the drawbacks of the frequentist ones.
47#
發(fā)表于 2025-3-29 19:15:37 | 只看該作者
48#
發(fā)表于 2025-3-29 21:08:43 | 只看該作者
Conference proceedings 2015ence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.
49#
發(fā)表于 2025-3-30 01:47:36 | 只看該作者
0302-9743 n and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.978-3-319-23460-1978-3-319-23461-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
50#
發(fā)表于 2025-3-30 05:51:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大港区| 邻水| 商城县| 原平市| 太仆寺旗| 贺兰县| 宜丰县| 石首市| 常州市| 朝阳区| 南岸区| 嘉善县| 黑山县| 吉木乃县| 北辰区| 淮北市| 西吉县| 海门市| 聂荣县| 海伦市| 镇坪县| 祁门县| 余庆县| 杭锦后旗| 腾冲县| 泰宁县| 康平县| 开化县| 哈巴河县| 平遥县| 苍山县| 观塘区| 颍上县| 肇源县| 金平| 太原市| 铜陵市| 庆元县| 贵港市| 景洪市| 同心县|