找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Massih-Reza Amini,Stéphane Canu,Grigorios Tsoumaka Conference p

[復(fù)制鏈接]
樓主: 關(guān)稅
21#
發(fā)表于 2025-3-25 04:06:15 | 只看該作者
22#
發(fā)表于 2025-3-25 11:16:06 | 只看該作者
23#
發(fā)表于 2025-3-25 15:25:40 | 只看該作者
Understanding the?Benefits of?Forgetting When Learning on?Dynamic Graphsn node representations, also called embeddings, that allow to capture in the best way possible the properties of these graphs. More recently, learning node embeddings for dynamic graphs attracted significant interest due to the rich temporal information that they provide about the appearance of edge
24#
發(fā)表于 2025-3-25 17:10:19 | 只看該作者
25#
發(fā)表于 2025-3-25 20:07:35 | 只看該作者
26#
發(fā)表于 2025-3-26 02:14:35 | 只看該作者
Joint Learning of?Hierarchical Community Structure and?Node Representations: An Unsupervised Approac. Research has shown that many natural graphs can be organized in hierarchical communities, leading to approaches that use these communities to improve the quality of node representations. However, these approaches do not take advantage of the learned representations to also improve the quality of t
27#
發(fā)表于 2025-3-26 08:09:10 | 只看該作者
28#
發(fā)表于 2025-3-26 10:40:25 | 只看該作者
Enhance Temporal Knowledge Graph Completion via?Time-Aware Attention Graph Convolutional Network graph is far from consummation because of its late start. Recent researches have shifted to the temporal knowledge graph relying on the extension of static ones. Most of these methods seek approaches to incorporate temporal information but neglect the potential adjacent impact merged in temporal kn
29#
發(fā)表于 2025-3-26 12:56:17 | 只看該作者
Start Small, Think Big: On Hyperparameter Optimization for Large-Scale Knowledge Graph Embeddingsown that KGE models are sensitive to hyperparameter settings, however, and that suitable choices are dataset-dependent. In this paper, we explore hyperparameter optimization (HPO) for very large knowledge graphs, where the cost of evaluating individual hyperparameter configurations is excessive. Pri
30#
發(fā)表于 2025-3-26 18:11:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
信丰县| 阿克陶县| 峡江县| 长寿区| 滁州市| 永春县| 杨浦区| 门头沟区| 象山县| 嘉义市| 德保县| 喜德县| 炎陵县| 景谷| 抚州市| 白河县| 青岛市| 开鲁县| 汶川县| 西藏| 芜湖县| 越西县| 海原县| 金坛市| 南阳市| 昭苏县| 公主岭市| 社会| 泰和县| 营山县| 罗平县| 涞水县| 开化县| 湖南省| 新密市| 横峰县| 荥阳市| 桐城市| 鄱阳县| 长海县| 连云港市|