找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Walter Daelemans,Bart Goethals,Katharina Morik Conference proce

[復(fù)制鏈接]
查看: 16944|回復(fù): 63
樓主
發(fā)表于 2025-3-21 19:06:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning and Knowledge Discovery in Databases
副標(biāo)題European Conference,
編輯Walter Daelemans,Bart Goethals,Katharina Morik
視頻videohttp://file.papertrans.cn/621/620488/620488.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Walter Daelemans,Bart Goethals,Katharina Morik Conference proce
描述This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
出版日期Conference proceedings 2008
關(guān)鍵詞Averaging; Support Vector Machine; active learning; algorithmic learning; association rule mining; bayesi
版次1
doihttps://doi.org/10.1007/978-3-540-87479-9
isbn_softcover978-3-540-87478-2
isbn_ebook978-3-540-87479-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Machine Learning and Knowledge Discovery in Databases影響因子(影響力)




書目名稱Machine Learning and Knowledge Discovery in Databases影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Knowledge Discovery in Databases網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases被引頻次




書目名稱Machine Learning and Knowledge Discovery in Databases被引頻次學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases年度引用




書目名稱Machine Learning and Knowledge Discovery in Databases年度引用學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases讀者反饋




書目名稱Machine Learning and Knowledge Discovery in Databases讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:41:55 | 只看該作者
From Microscopy Images to Models of Cellular Processesaginable just a few years ago. However, as the analysis of these images is done mostly by hand, there is a severe bottleneck in transforming these images into useful quantitative data that can be used to evaluate mathematical models..One of the inherent challenges involved in automating this transfo
板凳
發(fā)表于 2025-3-22 02:25:27 | 只看該作者
地板
發(fā)表于 2025-3-22 08:35:19 | 只看該作者
Learning Language from Its Perceptual Contexte to acquire language like a child by being exposed to linguistic input in the context of a relevant but ambiguous perceptual environment. As a step in this direction, we present a system that learns to sportscast simulated robot soccer games by example. The training data consists of textual human c
5#
發(fā)表于 2025-3-22 10:29:32 | 只看該作者
The Role of Hierarchies in Exploratory Data Miningold: first, the size of the space raises computational challenges, and second, it can introduce data sparsity issues even in the presence of very large datasets. In this talk, well consider how the use of hierarchies (e.g., taxonomies, or the OLAP multidimensional model) can help mitigate the proble
6#
發(fā)表于 2025-3-22 13:15:13 | 只看該作者
Rollout Sampling Approximate Policy Iterationuggests an approximate policy iteration algorithm for learning a good policy represented as a classifier, without explicit value function representation. At each iteration, a new policy is produced using training data obtained through rollouts of the previous policy on a simulator. These rollouts ai
7#
發(fā)表于 2025-3-22 19:43:21 | 只看該作者
8#
發(fā)表于 2025-3-22 23:19:16 | 只看該作者
Large Margin vs. Large Volume in Transductive Learningted uniformly at random from the full sample and the labels of the training points are revealed. The goal is to predict the labels of the remaining unlabeled points as accurately as possible. The full sample partitions the transductive hypothesis space into a finite number of .. All hypotheses in th
9#
發(fā)表于 2025-3-23 03:10:03 | 只看該作者
Incremental Exemplar Learning Schemes for Classification on Embedded Deviceson-monitoring data streams). Memory-based classifiers are an excellent choice in such cases, however, an embedded device is unlikely to be able to hold a large training dataset in memory (which could potentially keep increasing in size as new training data with new concepts arrive). A viable option
10#
發(fā)表于 2025-3-23 08:25:44 | 只看該作者
A Collaborative Filtering Framework Based on Both Local User Similarity and Global User Similarityer, we introduce the concept of local user similarity and global user similarity, based on surprisal-based vector similarity and the application of the concept of maximin distance in graph theory. Surprisal-based vector similarity expresses the relationship between any two users based on the quantit
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 20:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新津县| 新闻| 大姚县| 榆社县| 万源市| 黄大仙区| 吉安县| 周宁县| 湖南省| 宽城| 西贡区| 平定县| 温州市| 新巴尔虎左旗| 卢龙县| 澄江县| 云梦县| 平潭县| 尚义县| 河北省| 靖边县| 卢氏县| 沙河市| 红安县| 旬邑县| 淅川县| 通江县| 逊克县| 百色市| 大丰市| 澄江县| 紫阳县| 佛教| 太谷县| 黔西县| 开封市| 腾冲县| 孙吴县| 荣成市| 千阳县| 屏边|