找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Intelligent Communications; Third International Limin Meng,Yan Zhang Conference proceedings 2018 ICST Institute for C

[復(fù)制鏈接]
樓主: CAP
41#
發(fā)表于 2025-3-28 18:29:25 | 只看該作者
42#
發(fā)表于 2025-3-28 21:41:48 | 只看該作者
43#
發(fā)表于 2025-3-29 01:59:52 | 只看該作者
44#
發(fā)表于 2025-3-29 06:39:36 | 只看該作者
Real-Time Drone Detection Using Deep Learning Approachs in real time. In this paper, we design a real-time drone detector using deep learning approach. Specifically, we improve a well-performed deep learning model, i.e., You Only Look Once, by modifying its structure and tuning its parameters to better accommodate drone detection. Considering that a ro
45#
發(fā)表于 2025-3-29 08:00:08 | 只看該作者
Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Mobile Edge Computinguire a satisfactory task offloading and resource allocation decision for each user so as to minimize energy consumption and delay. In this paper, we propose a deep reinforcement learning-based approach to solve joint task offloading and resource allocation problems. Simulation results show that the
46#
發(fā)表于 2025-3-29 13:46:33 | 只看該作者
RFID Data-Driven Vehicle Speed Prediction Using Adaptive Kalman Filter First of all, when the vehicle moves through a RFID tag, the reader needs to acquire the state information (i.e., current speed and time stamp) of the last vehicle across the tag, and meanwhile transmits its state information to this tag. Then, the state space model can be formulated according to t
47#
發(fā)表于 2025-3-29 19:35:22 | 只看該作者
Speed Prediction of High Speed Mobile Vehicle Based on Extended Kalman Filter in RFID Systemrs. To this end, through using RFID (Radio Frequency Identification) data, this paper proposes a vehicle speed prediction algorithm based on Extended Kalman Filter (EKF). Specifically, the proposed algorithm works as follows. First, the RFID reader equipped in the vehicle acquires the state informat
48#
發(fā)表于 2025-3-29 19:46:59 | 只看該作者
49#
發(fā)表于 2025-3-30 01:00:53 | 只看該作者
50#
發(fā)表于 2025-3-30 06:09:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑山县| 荆州市| 河西区| 清河县| 景泰县| 宜城市| 红原县| 黄梅县| 长丰县| 蕲春县| 新源县| 桐城市| 保亭| 雅安市| 安丘市| 曲阳县| 清涧县| 东方市| 金阳县| 前郭尔| 葫芦岛市| 容城县| 泉州市| 天祝| 浮梁县| 新源县| 福建省| 九龙坡区| 鄂托克前旗| 新闻| 深水埗区| 荔浦县| 高碑店市| 喀什市| 亳州市| 赤水市| 天水市| 嫩江县| 和政县| 航空| 光泽县|