找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Image Interpretation; Terry Caelli,Walter F. Bischof Book 1997 Springer Science+Business Media New York 1997 computer

[復(fù)制鏈接]
查看: 51172|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:20:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Image Interpretation
編輯Terry Caelli,Walter F. Bischof
視頻videohttp://file.papertrans.cn/621/620471/620471.mp4
叢書名稱Advances in Computer Vision and Machine Intelligence
圖書封面Titlebook: Machine Learning and Image Interpretation;  Terry Caelli,Walter F. Bischof Book 1997 Springer Science+Business Media New York 1997 computer
描述In this groundbreaking new volume, computer researchers discussthe development of technologies and specific systems that caninterpret data with respect to domain knowledge. Although the chapterseach illuminate different aspects of image interpretation, all utilizea common approach - one that asserts such interpretation mustinvolve perceptual learning in terms of automated knowledgeacquisition and application, as well as feedback and consistencychecks between encoding, feature extraction, and the known knowledgestructures in a given application domain. The text is profuselyillustrated with numerous figures and tables to reinforce the conceptsdiscussed.
出版日期Book 1997
關(guān)鍵詞computer; development; machine learning; object recognition; tables
版次1
doihttps://doi.org/10.1007/978-1-4899-1816-1
isbn_softcover978-1-4899-1818-5
isbn_ebook978-1-4899-1816-1
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Machine Learning and Image Interpretation影響因子(影響力)




書目名稱Machine Learning and Image Interpretation影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Image Interpretation網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Image Interpretation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Image Interpretation被引頻次




書目名稱Machine Learning and Image Interpretation被引頻次學(xué)科排名




書目名稱Machine Learning and Image Interpretation年度引用




書目名稱Machine Learning and Image Interpretation年度引用學(xué)科排名




書目名稱Machine Learning and Image Interpretation讀者反饋




書目名稱Machine Learning and Image Interpretation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:56:03 | 只看該作者
ith respect to domain knowledge. Although the chapterseach illuminate different aspects of image interpretation, all utilizea common approach - one that asserts such interpretation mustinvolve perceptual learning in terms of automated knowledgeacquisition and application, as well as feedback and con
板凳
發(fā)表于 2025-3-22 04:20:48 | 只看該作者
,Cite—Scene Understanding and Object Recognition,d-loop system where the current interpretation state is used to drive the lower level image processing functions. The theory presented in this chapter is applied to a new object recognition and scene understanding system called . which is described in detail.
地板
發(fā)表于 2025-3-22 05:06:53 | 只看該作者
See++: An Object Oriented Theory of Task Specific Vision,sing requirements are provided by an image query language which is controlled by feedback from the knowledge base as a function of partial image interpretation. The See. framework has application to a spectrum of problems such as teleoperation in a low bandwidth environment. This domain is discussed and used to illustrate the system.
5#
發(fā)表于 2025-3-22 12:38:11 | 只看該作者
ABC: Biologically Motivated Image Understanding,ognition (ABC) model. The model comprises a series of recurrent self-organising topological maps, which form a general proposal for the understanding of cognition, and the visual component of this model is the subject of this chapter.
6#
發(fā)表于 2025-3-22 16:31:18 | 只看該作者
7#
發(fā)表于 2025-3-22 19:27:50 | 只看該作者
8#
發(fā)表于 2025-3-22 23:33:25 | 只看該作者
9#
發(fā)表于 2025-3-23 02:45:10 | 只看該作者
Fuzzy Conditional Rule Generation for the Learning and Recognition of 3D Objects from 2D Images,nition performance, and the implementation of a complete object recognition system that does not rely on perfect or synthetic data. We report a recognition rate of 80% for unseen single object scenes in a database of 18 non-trivial objects.
10#
發(fā)表于 2025-3-23 09:33:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安吉县| 岗巴县| 本溪| 察哈| 芮城县| 灯塔市| 邳州市| 广宗县| 巴楚县| 南部县| 肇东市| 屏边| 玉山县| 交城县| 康马县| 宁德市| 湟中县| 乐安县| 乌鲁木齐市| 九江市| 体育| 靖安县| 十堰市| 聊城市| 温宿县| 九江县| 望江县| 巴南区| 扎鲁特旗| 宜州市| 财经| 准格尔旗| 石台县| 双峰县| 宁南县| 吉隆县| 越西县| 柳州市| 铜梁县| 中山市| 澄城县|