找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Flow Assurance in Oil and Gas Production; Bhajan Lal,Cornelius Borecho Bavoh,Jai Krishna Sah Book 2023 The Editor(s)

[復(fù)制鏈接]
樓主: 弄混
21#
發(fā)表于 2025-3-25 06:34:35 | 只看該作者
Machine Learning in Oil and Gas Industry,dels. Also, the use of machine learning in the oil and gas upstream is discussed with highlights on the recent advancement on the use of AI in the oil and gas industry. The challenges facing the application of machine learning in the oil and gas industry is also presented.
22#
發(fā)表于 2025-3-25 07:50:02 | 只看該作者
23#
發(fā)表于 2025-3-25 13:04:21 | 只看該作者
Machine Learning and Flow Assurance Issues,This chapter briefly discusses the main challenges facing the flow assurance related areas in the?oil and gas industry. It also provide simple fundamental definitions to machine learning vocabulary to introduce?to machine learning terms.
24#
發(fā)表于 2025-3-25 16:50:40 | 只看該作者
25#
發(fā)表于 2025-3-25 22:43:33 | 只看該作者
Machine Learning for Scale Deposition in Oil and Gas Industry,This chapter briefly discusses the type of machine learning methods used for scales precipitation in flow assurance. It also discussed the scale formation predictive models.
26#
發(fā)表于 2025-3-26 02:55:52 | 只看該作者
Machine Learning Application Guidelines in Flow Assurance,In this chapter guidelines for conducting an effective machine learning based prediction models in flow assurance areas is presented with much emphasis of data availability, data representation and model selection.
27#
發(fā)表于 2025-3-26 08:04:18 | 只看該作者
Machine Learning and Flow Assurance in Oil and Gas Production
28#
發(fā)表于 2025-3-26 08:44:20 | 只看該作者
29#
發(fā)表于 2025-3-26 13:44:10 | 只看該作者
pate, limit, and/or prevent flow assurance problems is recommended as the best and most suitable practice. The existing proposed flow assurance?models on hydrates, wax, asphaltenes, scale, and corrosion managem978-3-031-24233-5978-3-031-24231-1
30#
發(fā)表于 2025-3-26 17:18:41 | 只看該作者
Muhammad Saad Khan,Abinash Barooah,Bhajan Lal,Mohammad Azizur Rahman
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昂仁县| 页游| 汝阳县| 克东县| 藁城市| 巢湖市| 吴川市| 海兴县| 北川| 陵川县| 富裕县| 龙游县| 苏尼特左旗| 德化县| 紫阳县| 平度市| 岳西县| 彭阳县| 雷州市| 涞水县| 襄樊市| 怀仁县| 穆棱市| 宣武区| 北宁市| 富民县| 灯塔市| 中江县| 六盘水市| 安泽县| 科技| 晴隆县| 永昌县| 镇雄县| 上林县| 广州市| 磐石市| 榆林市| 泸西县| 盐源县| 内黄县|