找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 10th International C Petra Perner Conference proceedings 2014 Springer Internation

[復(fù)制鏈接]
查看: 7638|回復(fù): 61
樓主
發(fā)表于 2025-3-21 18:20:28 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Data Mining in Pattern Recognition
副標(biāo)題10th International C
編輯Petra Perner
視頻videohttp://file.papertrans.cn/621/620467/620467.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Data Mining in Pattern Recognition; 10th International C Petra Perner Conference proceedings 2014 Springer Internation
描述This book constitutes the refereed proceedings of the 10th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2014, held in St. Petersburg, Russia in July 2014. The 40 full papers presented were carefully reviewed and selected from 128 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining.
出版日期Conference proceedings 2014
關(guān)鍵詞association rule mining; bayesian network; bioinformatics; crowdsourcing; data mining; ensemble method; ma
版次1
doihttps://doi.org/10.1007/978-3-319-08979-9
isbn_softcover978-3-319-08978-2
isbn_ebook978-3-319-08979-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Machine Learning and Data Mining in Pattern Recognition影響因子(影響力)




書目名稱Machine Learning and Data Mining in Pattern Recognition影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Data Mining in Pattern Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition被引頻次




書目名稱Machine Learning and Data Mining in Pattern Recognition被引頻次學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition年度引用




書目名稱Machine Learning and Data Mining in Pattern Recognition年度引用學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition讀者反饋




書目名稱Machine Learning and Data Mining in Pattern Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:46 | 只看該作者
Eran Shaham,David Sarne,Boaz Ben-Mosheasche und eines weiten Neusilbertrichters ohne Verlust in einen 100 ccm-Kolben, kl?rt nach Bedarf mit Bleiessig, d. h. bis nach dem Absetzen des entstehenden Niederschlages auf Zusatz einiger weiterer Tropfen keine Trübung mehr entsteht, und polarisirt im 200 mm-Rohr. Die abgelesenen Grade sind wege
板凳
發(fā)表于 2025-3-22 02:37:51 | 只看該作者
地板
發(fā)表于 2025-3-22 07:56:35 | 只看該作者
Towards the Efficient Recovery of General Multi-Dimensional Bayesian Network Classifierional Bayesian network classifier (MBNC) was devised for MDC in 2006, but with restricted structure. By removing the constraints, an undocumented model called general multi-dimensional Bayesian network classifier (GMBNC) is proposed in this article, along with an exact induction algorithm which is a
5#
發(fā)表于 2025-3-22 11:48:07 | 只看該作者
6#
發(fā)表于 2025-3-22 15:05:58 | 只看該作者
Multiple Regression Method Based on Unexpandable and Irreducible Convex Combinationssearched with an ordinary least squares technique. Convex combination is considered optimal if it correlates with the response variable in the best way. It is shown that the developed approach is equivalent to a least squares technique variant regularized by constraints on signs of regression parame
7#
發(fā)表于 2025-3-22 20:09:08 | 只看該作者
8#
發(fā)表于 2025-3-22 22:36:17 | 只看該作者
9#
發(fā)表于 2025-3-23 02:30:43 | 只看該作者
ACCD: Associative Classification over Concept-Drifting Data Streamstive classification over data streams. Different from data in traditional static databases, data streams typically arrive continuously and unboundedly with occasionally changing data distribution known as concept drift. In this paper, we propose a new Associative Classification over Concept-Drifting
10#
發(fā)表于 2025-3-23 08:40:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 18:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垦利县| 岱山县| 肥乡县| 辽阳县| 广灵县| 长宁区| 郎溪县| 江城| 南郑县| 镇康县| 上蔡县| 巴青县| 萨嘎县| 建宁县| 阳西县| 望都县| 麻城市| 阿坝| 安庆市| 重庆市| 明光市| 楚雄市| 平山县| 莒南县| 鲜城| 宁德市| 厦门市| 磐安县| 仁寿县| 囊谦县| 耿马| 南皮县| 潜山县| 建昌县| 湖州市| 龙泉市| 城口县| 昌都县| 增城市| 普宁市| 皋兰县|