找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 4th International Co Petra Perner,Atsushi Imiya Conference proceedings 2005 Spring

[復(fù)制鏈接]
查看: 26686|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:39:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Data Mining in Pattern Recognition
副標題4th International Co
編輯Petra Perner,Atsushi Imiya
視頻videohttp://file.papertrans.cn/621/620461/620461.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Data Mining in Pattern Recognition; 4th International Co Petra Perner,Atsushi Imiya Conference proceedings 2005 Spring
描述We met again in front of the statue of Gottfried Wilhelm von Leibniz in the city of Leipzig. Leibniz, a famous son of Leipzig, planned automatic logical inference using symbolic computation, aimed to collate all human knowledge. Today, artificial intelligence deals with large amounts of data and knowledge and finds new information using machine learning and data mining. Machine learning and data mining are irreplaceable subjects and tools for the theory of pattern recognition and in applications of pattern recognition such as bioinformatics and data retrieval. This was the fourth edition of MLDM in Pattern Recognition which is the main event of Technical Committee 17 of the International Association for Pattern Recognition; it started out as a workshop and continued as a conference in 2003. Today, there are many international meetings which are titled “machine learning” and “data mining”, whose topics are text mining, knowledge discovery, and applications. This meeting from the first focused on aspects of machine learning and data mining in pattern recognition problems. We planned to reorganize classical and well-established pattern recognition paradigms from the viewpoints of mach
出版日期Conference proceedings 2005
關(guān)鍵詞classification; computer vision; data mining; learning; machine learning; pattern mining
版次1
doihttps://doi.org/10.1007/b138149
isbn_softcover978-3-540-26923-6
isbn_ebook978-3-540-31891-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

書目名稱Machine Learning and Data Mining in Pattern Recognition影響因子(影響力)




書目名稱Machine Learning and Data Mining in Pattern Recognition影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Data Mining in Pattern Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition被引頻次




書目名稱Machine Learning and Data Mining in Pattern Recognition被引頻次學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition年度引用




書目名稱Machine Learning and Data Mining in Pattern Recognition年度引用學(xué)科排名




書目名稱Machine Learning and Data Mining in Pattern Recognition讀者反饋




書目名稱Machine Learning and Data Mining in Pattern Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:10 | 只看該作者
Incremental Classification Rules Based on Association Rules Using Formal Concept Analysisaper, we present the integration of Association rules and Classification rules using Concept Lattice. This gives more accurate classifiers for Classification. The algorithm used is incremental in nature. Any increase in the number of classes, attributes or transactions does not require the access to
板凳
發(fā)表于 2025-3-22 00:30:32 | 只看該作者
地板
發(fā)表于 2025-3-22 07:38:06 | 只看該作者
Finite Mixture Models with Negative Componentsated by several Gaussian components, however, it can not always acquire appropriate results. By cancelling the nonnegative constraint to mixture coefficients and introducing a new concept of “negative components”, we extend the traditional mixture models and enhance their performance without increas
5#
發(fā)表于 2025-3-22 12:02:16 | 只看該作者
MML-Based Approach for Finite Dirichlet Mixture Estimation and Selection determining the number of clusters which best describe the data. We consider here the application of the Minimum Message length (MML) principle to determine the number of clusters. The Model is compared with results obtained by other selection criteria (AIC, MDL, MMDL, PC and a Bayesian method). Th
6#
發(fā)表于 2025-3-22 14:41:45 | 只看該作者
7#
發(fā)表于 2025-3-22 18:11:24 | 只看該作者
8#
發(fā)表于 2025-3-22 21:39:07 | 只看該作者
Determining Regularization Parameters for Derivative Free Neural Learningg problem makes local optimization methods very attractive; however the error surface contains many local minima. Discrete gradient method is a special case of derivative free methods based on bundle methods and has the ability to jump over many local minima. There are two types of problems that are
9#
發(fā)表于 2025-3-23 04:02:07 | 只看該作者
A Comprehensible SOM-Based Scoring System and ‘bad’ risk categories. Traditionally, (logistic) regression used to be one of the most popular methods for this task, but recently some newer techniques like neural networks and support vector machines have shown excellent classification performance. Self-organizing maps (SOMs) have existed for
10#
發(fā)表于 2025-3-23 06:37:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和龙市| 建宁县| 开原市| 通山县| 弥渡县| 木兰县| 曲松县| 嘉鱼县| 沾化县| 聊城市| 新巴尔虎左旗| 天镇县| 蓬溪县| 绩溪县| 阿克陶县| 松原市| 潮州市| 双辽市| 苍山县| 皮山县| 宁远县| 青铜峡市| 西和县| 泰宁县| 博兴县| 庐江县| 松潘县| 河南省| 禄劝| 苏尼特左旗| 凤冈县| 屯留县| 准格尔旗| 溆浦县| 湖南省| 老河口市| 临朐县| 三明市| 海兴县| 同德县| 思南县|