找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges; Aboul Ella Hassanien,Ashraf Darwish Book 2021 Th

[復(fù)制鏈接]
查看: 19064|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:25:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges
編輯Aboul Ella Hassanien,Ashraf Darwish
視頻videohttp://file.papertrans.cn/621/620440/620440.mp4
概述Presents recent research in Machine Learning and Big Data Analytics.Provides an Analysis, Applications, and Challenges of Big Data and Machine Learning.Exhibits various technologies to create systems
叢書(shū)名稱Studies in Big Data
圖書(shū)封面Titlebook: Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges;  Aboul Ella Hassanien,Ashraf Darwish Book 2021 Th
描述.This book is intended to present the state of the art in research on machine learning and big data analytics.?The accepted chapters?covered many themes including? artificial intelligence and data mining applications,?machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications. .
出版日期Book 2021
關(guān)鍵詞Machine Learning and Data Mining Applications; Deep Learning Techniques and applications; Deep Learnin
版次1
doihttps://doi.org/10.1007/978-3-030-59338-4
isbn_softcover978-3-030-59340-7
isbn_ebook978-3-030-59338-4Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges影響因子(影響力)




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges被引頻次




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges被引頻次學(xué)科排名




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges年度引用




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges年度引用學(xué)科排名




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges讀者反饋




書(shū)目名稱Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:43:44 | 只看該作者
地板
發(fā)表于 2025-3-22 05:37:00 | 只看該作者
Convolutional Neural Network with Batch Normalization for Classification of Endoscopic Gastrointestionvolutional neural network (CNN) with batch normalization (BN) and an exponential linear unit (ELU) as the activation function. The proposed approach consists of eight layers (six convolutional and two fully connected layers) and is used to identify eight types of GI diseases in version two of the
5#
發(fā)表于 2025-3-22 12:10:09 | 只看該作者
6#
發(fā)表于 2025-3-22 14:55:40 | 只看該作者
Bio-inspired Machine Learning Mechanism for Detecting Malicious URL Through Passive DNS in Big Data tial or full system control to the attackers. To overcome these issues, researchers have applied machine learning techniques for malicious URL detection. However, these techniques fall to identify distinguishable generic features that are able to define the maliciousness of a given domain. Generally
7#
發(fā)表于 2025-3-22 18:03:48 | 只看該作者
8#
發(fā)表于 2025-3-23 00:35:10 | 只看該作者
9#
發(fā)表于 2025-3-23 03:27:18 | 只看該作者
Literature Review with Study and Analysis of the Quality Challenges of Recommendation Techniques andes have shown the demand for the recommender systems and their growing place in our lives. More steps deeper, we noticed that the severity of the quality and accuracy of these recommendation systems is very high to match users with same interests. For that reason and for being in competitive positio
10#
發(fā)表于 2025-3-23 08:15:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沅陵县| 平武县| 东乡族自治县| 资阳市| 宁晋县| 桑植县| 门源| 本溪市| 门头沟区| 呼玛县| 景德镇市| 邻水| 馆陶县| 阳东县| 仁布县| 福鼎市| 同仁县| 潞西市| 奇台县| 兴安盟| 顺昌县| 张家界市| 子洲县| 城市| 邢台市| 盐津县| 阳新县| 安丘市| 拉萨市| 寻乌县| 根河市| 怀仁县| 正宁县| 双桥区| 海城市| 库尔勒市| 青河县| 南部县| 靖江市| 白河县| 搜索|