找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Models and Algorithms for Big Data Classification; Thinking with Exampl Shan Suthaharan Book 2016 Springer Science+Busines

[復(fù)制鏈接]
樓主: 變成小松鼠
31#
發(fā)表于 2025-3-27 00:44:29 | 只看該作者
32#
發(fā)表于 2025-3-27 01:12:35 | 只看該作者
Deep Learning Modelsnd provide programming examples that help you clearly understand these approaches. These techniques heavily depend on the stochastic gradient descent approach; and this approach is also discussed in detail with simple iterative examples. These parametrized deep learning techniques are also dependent
33#
發(fā)表于 2025-3-27 07:38:14 | 只看該作者
Chandelier Decision Tree tree and the random forest. The chapter also presents a previously proposed algorithm called the unit circle algorithm (UCA) and proposes a family of UCA-based algorithms called the unit circle machine (UCM), unit ring algorithm (URA), and unit ring machine (URM). The unit circle algorithm integrat
34#
發(fā)表于 2025-3-27 12:50:10 | 只看該作者
Dimensionality Reductionis, that can support scaling-up machine learning. The standard and flagged feature hashing approaches are explained in detail. The feature hashing approach suffers from the hash collision problem, and this problem is reported and discussed in detail in this chapter, too. Two collision controllers, f
35#
發(fā)表于 2025-3-27 17:30:24 | 只看該作者
36#
發(fā)表于 2025-3-27 17:57:10 | 只看該作者
MapReduce Programming Platformprovide good programming practices to the users of the MapReduce programming platform in the context of big data processing and analysis. Several programming examples are also presented to help the reader to practice coding principles and better understand the MapReduce framework.
37#
發(fā)表于 2025-3-28 00:21:39 | 只看該作者
Random Forest Learning chapter include detailed discussions on these approaches. The chapter also discusses the training and testing algorithms that are suitable for the random forest supervised learning. The chapter also presents simple examples and visual aids to better understand the random forest supervised learning technique.
38#
發(fā)表于 2025-3-28 05:35:47 | 只看該作者
39#
發(fā)表于 2025-3-28 09:37:05 | 只看該作者
1571-0270 overcome Big Data classification problems that industries, .This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach)
40#
發(fā)表于 2025-3-28 13:07:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济宁市| 元氏县| 新河县| 榕江县| 平凉市| 闻喜县| 临沧市| 南召县| 伊金霍洛旗| 伊宁县| 大田县| 洛浦县| 上犹县| 格尔木市| 永城市| 永仁县| 吉林市| 修武县| 德钦县| 响水县| 常宁市| 红原县| 香河县| 绍兴市| 五莲县| 长垣县| 阳江市| 苍溪县| 建德市| 仙居县| 木里| 紫云| 铜川市| 治多县| 洛浦县| 三台县| 谷城县| 寻乌县| 普兰店市| 全南县| 江山市|