找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Methods; Hang Li Textbook 2024 Tsinghua University Press 2024 Machine Learning.Statistical Learning.Supervised Learning.U

[復(fù)制鏈接]
查看: 10167|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:19:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning Methods
編輯Hang Li
視頻videohttp://file.papertrans.cn/621/620403/620403.mp4
概述Provides introduction to principle machine learning methods, covering both supervised and unsupervised learning methods.Presents clear descriptions, detailed proofs, and concrete examples using concis
圖書封面Titlebook: Machine Learning Methods;  Hang Li Textbook 2024 Tsinghua University Press 2024 Machine Learning.Statistical Learning.Supervised Learning.U
描述This book provides a comprehensive and systematic introduction to the principal machine learning methods, covering both supervised and unsupervised learning methods. It discusses essential methods of classification and regression in supervised learning, such as decision trees, perceptrons, support vector machines, maximum entropy models, logistic regression models and multiclass classification, as well as methods applied in supervised learning, like the hidden Markov model and conditional random fields. In the context of unsupervised learning, it examines clustering and other problems as well as methods such as singular value decomposition, principal component analysis and latent semantic analysis.. As a fundamental book on machine learning, it addresses the needs of researchers and students who apply machine learning as an important tool in their research, especially those in fields such as information retrieval, natural language processing and text data mining. In order to understand the concepts and methods discussed, readers are expected to have an elementary knowledge of advanced mathematics, linear algebra and probability statistics. The detailed explanations of basic princip
出版日期Textbook 2024
關(guān)鍵詞Machine Learning; Statistical Learning; Supervised Learning; Unsupervised Learning; Classification; Regre
版次1
doihttps://doi.org/10.1007/978-981-99-3917-6
isbn_softcover978-981-99-3919-0
isbn_ebook978-981-99-3917-6
copyrightTsinghua University Press 2024
The information of publication is updating

書目名稱Machine Learning Methods影響因子(影響力)




書目名稱Machine Learning Methods影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Methods網(wǎng)絡(luò)公開度




書目名稱Machine Learning Methods網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Methods被引頻次




書目名稱Machine Learning Methods被引頻次學(xué)科排名




書目名稱Machine Learning Methods年度引用




書目名稱Machine Learning Methods年度引用學(xué)科排名




書目名稱Machine Learning Methods讀者反饋




書目名稱Machine Learning Methods讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:28:48 | 只看該作者
Hang LiProvides introduction to principle machine learning methods, covering both supervised and unsupervised learning methods.Presents clear descriptions, detailed proofs, and concrete examples using concis
板凳
發(fā)表于 2025-3-22 02:47:55 | 只看該作者
地板
發(fā)表于 2025-3-22 08:38:57 | 只看該作者
5#
發(fā)表于 2025-3-22 10:39:54 | 只看該作者
Perceptron,This chapter first introduces the perceptron model, then describes the learning strategy of the perceptron, especially the loss function, and finally presents perceptron learning algorithms, including the primitive form and the dual form, and proves the algorithm’s convergence.
6#
發(fā)表于 2025-3-22 16:08:52 | 只看該作者
-Nearest Neighbor,This chapter first describes the .-NN algorithm, then discusses the model and three basic elements of .-NN, and finally describes an implementation method of .-NN—the .-tree, focusing on algorithms for constructing and searching the .-tree.
7#
發(fā)表于 2025-3-22 18:57:28 | 只看該作者
8#
發(fā)表于 2025-3-22 22:21:57 | 只看該作者
Decision Tree,This chapter first introduces the basic concept of the decision tree, then introduces feature selection, tree-generation and tree-pruning through ID3 and C4.5 algorithms, and finally introduces the CART algorithm.
9#
發(fā)表于 2025-3-23 02:02:09 | 只看該作者
Logistic Regression and Maximum Entropy Model,This chapter first introduces the logistic regression model, then the maximum entropy model, and finally describes the learning algorithms for logistic regression and maximum entropy models, including the improved iterative scaling algorithm and the Quasi-Newton method.
10#
發(fā)表于 2025-3-23 06:00:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同心县| 沙湾县| 河西区| 通城县| 德阳市| 五寨县| 稷山县| 富川| 八宿县| 泸西县| 阆中市| 南丹县| 顺昌县| 旬阳县| 平果县| 兰溪市| 吴堡县| 永吉县| 蒲城县| 武隆县| 和田市| 库伦旗| 会泽县| 旌德县| 股票| 铜梁县| 昭通市| 靖江市| 昂仁县| 增城市| 苗栗市| 咸丰县| 东乌珠穆沁旗| 广安市| 瑞安市| 周至县| 高平市| 宝丰县| 西林县| 綦江县| 隆回县|