找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning For Network Traffic and Video Quality Analysis; Develop and Deploy A Tulsi Pawan Fowdur,Lavesh Babooram Book 2024 Tulsi Pa

[復(fù)制鏈接]
查看: 9584|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:20:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning For Network Traffic and Video Quality Analysis
副標題Develop and Deploy A
編輯Tulsi Pawan Fowdur,Lavesh Babooram
視頻videohttp://file.papertrans.cn/621/620398/620398.mp4
概述Shows how to assess the performance of NTMA and VQA algorithms.Covers the latest advances in machine learning algorithms for NTMA and VQA.Explains all processes and system models using intuitive diagr
圖書封面Titlebook: Machine Learning For Network Traffic and Video Quality Analysis; Develop and Deploy A Tulsi Pawan Fowdur,Lavesh Babooram Book 2024 Tulsi Pa
描述.This book offers both theoretical insights and hands-on experience in understanding and building machine learning-based Network Traffic Monitoring and Analysis (NTMA) and Video Quality Assessment (VQA) applications using JavaScript. JavaScript provides the flexibility to deploy these applications across various devices and web browsers...?..The book begins by delving into NTMA, explaining fundamental concepts and providing an overview of existing applications and research within this domain. It also goes into the essentials of VQA and offers a survey of the latest developments in VQA algorithms. The book includes a thorough examination of machine learning algorithms that find application in both NTMA and VQA, with a specific emphasis on classification and prediction algorithms such as the Multi-Layer Perceptron and Support Vector Machine. The book also explores the software architecture of the NTMA client-server application. This architecture is meticulously developed using HTML, CSS, Node.js, and JavaScript. Practical aspects of developing the Video Quality Assessment (VQA) model using JavaScript and Java are presented. Lastly, the book provides detailed guidance on implementing
出版日期Book 2024
關(guān)鍵詞Network Traffic Analysis; Video Quality; Machine Learning; JavaScript; Deep Learning; Artificial intellig
版次1
doihttps://doi.org/10.1007/979-8-8688-0354-3
isbn_softcover979-8-8688-0353-6
isbn_ebook979-8-8688-0354-3
copyrightTulsi Pawan Fowdur, Lavesh Babooram 2024
The information of publication is updating

書目名稱Machine Learning For Network Traffic and Video Quality Analysis影響因子(影響力)




書目名稱Machine Learning For Network Traffic and Video Quality Analysis影響因子(影響力)學科排名




書目名稱Machine Learning For Network Traffic and Video Quality Analysis網(wǎng)絡(luò)公開度




書目名稱Machine Learning For Network Traffic and Video Quality Analysis網(wǎng)絡(luò)公開度學科排名




書目名稱Machine Learning For Network Traffic and Video Quality Analysis被引頻次




書目名稱Machine Learning For Network Traffic and Video Quality Analysis被引頻次學科排名




書目名稱Machine Learning For Network Traffic and Video Quality Analysis年度引用




書目名稱Machine Learning For Network Traffic and Video Quality Analysis年度引用學科排名




書目名稱Machine Learning For Network Traffic and Video Quality Analysis讀者反饋




書目名稱Machine Learning For Network Traffic and Video Quality Analysis讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:53:24 | 只看該作者
Tulsi Pawan Fowdur,Lavesh Babooramt. In einem zweiten Schritt erfolgt die Darstellung der fünf identifizierten Kooperationsmodelle, die das zentrale Element der Untersuchung sind. Die Modelle werden einzeln dargestellt, um die jeweiligen Kooperationsformen klar voneinander abzugrenzen. Diesen Modellen entsprechend wird in einem drit
板凳
發(fā)表于 2025-3-22 02:33:44 | 只看該作者
Tulsi Pawan Fowdur,Lavesh BabooramLehrerkooperation eingegangen, die in dieser Arbeit als abh?ngige Variable fungiert. In Kapitel 4.1 wird zun?chst der Begriff der Kooperation von ?hnlichen Konstrukten wie der Kollegialit?t, der sozialen Unterstützung, der Kommunikation und der Koordination abgegrenzt. Daran anschlie?end werden in d
地板
發(fā)表于 2025-3-22 08:10:50 | 只看該作者
5#
發(fā)表于 2025-3-22 11:33:48 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:54 | 只看該作者
7#
發(fā)表于 2025-3-22 18:20:01 | 只看該作者
Network Traffic Monitoring and Analysis,ghlighting the crucial part it plays in evaluating network activity and performance. Coupled with the massive influx of users onto our networks, activities such as web browsing and video streaming have gained increasing popularity, further necessitating measures and standards for maintaining the qua
8#
發(fā)表于 2025-3-22 22:29:30 | 只看該作者
Video Quality Assessment,ets and highlights of VQA are elaborated with regard to maintaining a seamless multimedia experience. The breakdown includes a deep dive into the different artifacts that the algorithm uses, such as ringing, blocking, and noising. With the technique used being a no-reference (NR) metric, a mean opin
9#
發(fā)表于 2025-3-23 03:13:43 | 只看該作者
Machine Learning Techniques for NTMA and VQA,y assessment (VQA). Through passive listening of network parameters’ being reported by the network interface, the Node.js server formulates a series of arrays that keep track of network traffic collected over time. The same applies to ML-derived mean opinion score (MOS) values through video streamin
10#
發(fā)表于 2025-3-23 08:23:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 13:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建宁县| 隆化县| 磐石市| 澳门| 堆龙德庆县| 扶绥县| 盈江县| 综艺| 南城县| 南京市| 开阳县| 乐安县| 泸定县| 武强县| 沾化县| 大荔县| 固阳县| 澄江县| 汾西县| 台山市| 黔东| 汉沽区| 山东省| 桂平市| 洛南县| 泰来县| 兴山县| 施秉县| 黔南| 夏河县| 新宾| 阿瓦提县| 梁山县| 西充县| 思南县| 渭源县| 育儿| 日喀则市| 临漳县| 融水| 治多县|