找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Concepts with Python and the Jupyter Notebook Environment; Using Tensorflow 2.0 Nikita Silaparasetty Book 2020 Nikita Sila

[復(fù)制鏈接]
查看: 22100|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:21:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment
副標(biāo)題Using Tensorflow 2.0
編輯Nikita Silaparasetty
視頻videohttp://file.papertrans.cn/621/620392/620392.mp4
概述Gain comfort in the Jupyter Notebooks environment, which makes programming in Python even easier.Build a basic understanding of more complex Machine Learning concepts and how TensorFlow simplifies the
圖書封面Titlebook: Machine Learning Concepts with Python and the Jupyter Notebook Environment; Using Tensorflow 2.0 Nikita Silaparasetty Book 2020 Nikita Sila
描述. .Create, execute, modify, and share machine learning applications with Python and TensorFlow 2.0 in the Jupyter Notebook environment.?This book breaks down any barriers to programming machine learning applications through the use of Jupyter Notebook instead of a text editor or a regular IDE..You’ll start by learning how to use Jupyter Notebooks to improve the way you program with Python. After getting a good grounding in working with Python in Jupyter Notebooks, you’ll dive into what TensorFlow is, how it helps machine learning enthusiasts, and how to tackle the challenges it presents. Along the way, sample?programs created using Jupyter Notebooks allow you to apply concepts from earlier in the book..Those who are new to machine learning can dive in with these easy programs and develop basic skills. A glossary at the end of the book provides common machine learning and Python keywords and definitions to make learning even easier..What You Will Learn.Programin Python and TensorFlow.Tacklebasic machine learning obstacles.Developin the Jupyter Notebooks environment.Who This Book Is For.Ideal for Machine Learning and Deep Learning enthusiasts who are interested in programming with Py
出版日期Book 2020
關(guān)鍵詞TensorFlow; Deep Learning; Machine Learning; Jupyter Notebook; Python
版次1
doihttps://doi.org/10.1007/978-1-4842-5967-2
isbn_softcover978-1-4842-5966-5
isbn_ebook978-1-4842-5967-2
copyrightNikita Silaparasetty 2020
The information of publication is updating

書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment影響因子(影響力)




書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment網(wǎng)絡(luò)公開度




書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment被引頻次




書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment被引頻次學(xué)科排名




書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment年度引用




書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment年度引用學(xué)科排名




書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment讀者反饋




書目名稱Machine Learning Concepts with Python and the Jupyter Notebook Environment讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:48:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:47:24 | 只看該作者
Introduction to Jupyter Notebook, however, is not the most recommended tool to use when it comes to massive machine learning programming. This is why we have developed applications like Jupyter Notebook, which aid in such programming requirements.
地板
發(fā)表于 2025-3-22 07:17:18 | 只看該作者
Introducing Tensorflow 2.0till in its alpha version. Despite its being an unofficial release, it had already gathered quite a bit of attention from programmers, who soon realized that it was definitely a significant improvement from what it used to be.
5#
發(fā)表于 2025-3-22 11:04:01 | 只看該作者
6#
發(fā)表于 2025-3-22 16:17:11 | 只看該作者
erblick bei Br?uer/Winkler 2012). Die zu beobachtende Konsolidierung legt es nun aber zugleich nahe, nach der Justierung dieser Forschungsrichtung genauer zu fragen: Welche Zielsetzungen werden bzw. sollen verfolgt werden? Lassen sich Aussagen über geeignete Forschungsdesigns treffen? Welche Verknüp
7#
發(fā)表于 2025-3-22 18:59:54 | 只看該作者
8#
發(fā)表于 2025-3-22 22:50:58 | 只看該作者
Nikita Silaparasettyklung eines institutionalisierten, ?ffentlichen, im Prinzip allen Kindern und Jugendlichen zug?nglichen Bildungswesens er?ffnet der heranwachsenden Generation bis dato einmalige Bildungschancen. Dass diese auch vermehrt genutzt werden, zeigt die Entwicklung der Schülerzahlen in den letzten Jahren; D
9#
發(fā)表于 2025-3-23 04:46:16 | 只看該作者
die historische und gesellschaftliche Entwicklung eines institutionalisierten, ?ffentlichen, im Prinzip allen Kindern und Jugendlichen zug?nglichen Bildungswesens der heranwachsenden Generation bis dato einmalige Bildungschancen er?ffnet. Dass diese auch vermehrt genutzt werden, zeigt sich mit Blick
10#
發(fā)表于 2025-3-23 06:34:58 | 只看該作者
Nikita Silaparasettynzepte. Im ersten Teil werden — ausgehend vom Bedeutungshof des Begriffs ?Intelligenz“ und seiner wissenschaftlichen Verwendung — exemplarisch drei Intelligenzmodelle vorgestellt: Spearmans Generalfaktormodell, Thurstones Modell der Prim?rf?higkeiten und ein hierarchisches Modell als Synthese dieser
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仆寺旗| 聂拉木县| 泰顺县| 蕉岭县| 开封市| 尤溪县| 卫辉市| 青岛市| 寿光市| 侯马市| 舟曲县| 桐梓县| 资溪县| 天镇县| 巴林左旗| 醴陵市| 扎赉特旗| 东明县| 健康| 普安县| 文成县| 惠来县| 长海县| 镇康县| 南城县| 体育| 福贡县| 辉县市| 衡南县| 荆州市| 新源县| 西华县| 武定县| 伊金霍洛旗| 凤城市| 临清市| 称多县| 手游| 栾城县| 平昌县| 华安县|