找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Challenges; Evaluating Predictiv Joaquin Qui?onero-Candela,Ido Dagan,Florence d’Alc Conference proceedings 2006 Springer-V

[復(fù)制鏈接]
查看: 37100|回復(fù): 70
樓主
發(fā)表于 2025-3-21 18:03:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Machine Learning Challenges
副標(biāo)題Evaluating Predictiv
編輯Joaquin Qui?onero-Candela,Ido Dagan,Florence d’Alc
視頻videohttp://file.papertrans.cn/621/620391/620391.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Machine Learning Challenges; Evaluating Predictiv Joaquin Qui?onero-Candela,Ido Dagan,Florence d’Alc Conference proceedings 2006 Springer-V
出版日期Conference proceedings 2006
關(guān)鍵詞Bayesian inference; Syntax; algorithm; algorithmic learning; algorithms; classification; cognition; computa
版次1
doihttps://doi.org/10.1007/11736790
isbn_softcover978-3-540-33427-9
isbn_ebook978-3-540-33428-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書(shū)目名稱(chēng)Machine Learning Challenges影響因子(影響力)




書(shū)目名稱(chēng)Machine Learning Challenges影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Challenges網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Machine Learning Challenges網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Challenges被引頻次




書(shū)目名稱(chēng)Machine Learning Challenges被引頻次學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Challenges年度引用




書(shū)目名稱(chēng)Machine Learning Challenges年度引用學(xué)科排名




書(shū)目名稱(chēng)Machine Learning Challenges讀者反饋




書(shū)目名稱(chēng)Machine Learning Challenges讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:09:07 | 只看該作者
The 2005 PASCAL Visual Object Classes Challenge, object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved.
板凳
發(fā)表于 2025-3-22 03:50:35 | 只看該作者
What Syntax Can Contribute in the Entailment Task,tegorization can be accurately predicted based solely on syntactic cues. Two human annotators examined each pair, showing that a surprisingly large proportion of the data – 34% of the test items – can be handled with syntax alone, while adding information from a general-purpose thesaurus increases this to 48%.
地板
發(fā)表于 2025-3-22 07:05:49 | 只看該作者
A Lexical Alignment Model for Probabilistic Textual Entailment,ic setting that formalizes the notion of textual entailment. We then describe a concrete alignment-based model for lexical entailment, which utilizes web co-occurrence statistics in a bag of words representation. Finally, we report the results of the model on the . challenge dataset along with some analysis.
5#
發(fā)表于 2025-3-22 11:27:39 | 只看該作者
Partial Predicate Argument Structure Matching for Entailment Determination,cture matching combined with a WordNet-based lexical similarity measure. In this paper we describe experiments with different system settings conducted to assess the potential and limitations of partial predicate-argument structures in textual entailment determination.
6#
發(fā)表于 2025-3-22 13:23:05 | 只看該作者
7#
發(fā)表于 2025-3-22 19:26:44 | 只看該作者
8#
發(fā)表于 2025-3-22 22:53:59 | 只看該作者
9#
發(fā)表于 2025-3-23 03:21:16 | 只看該作者
10#
發(fā)表于 2025-3-23 07:46:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 12:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安溪县| 读书| 宜丰县| 襄汾县| 阜南县| 原阳县| 罗源县| 泊头市| 白玉县| 古丈县| 武义县| 鄂托克前旗| 休宁县| 安平县| 榆中县| 海宁市| 容城县| 合山市| 通城县| 新绛县| 合川市| 澎湖县| 独山县| 漳州市| 克山县| 临清市| 鹤庆县| 平泉县| 南投县| 淮安市| 奉新县| 旌德县| 巴林右旗| 黔西县| 高雄县| 读书| 江阴市| 定州市| 报价| 陆河县| 临高县|