找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Approaches to Non-Intrusive Load Monitoring; Roberto Bonfigli,Stefano Squartini Book 2020 The Author(s), under exclusive

[復(fù)制鏈接]
查看: 30486|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:07:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring
編輯Roberto Bonfigli,Stefano Squartini
視頻videohttp://file.papertrans.cn/621/620389/620389.mp4
叢書名稱SpringerBriefs in Energy
圖書封面Titlebook: Machine Learning Approaches to Non-Intrusive Load Monitoring;  Roberto Bonfigli,Stefano Squartini Book 2020 The Author(s), under exclusive
描述Research on Smart Grids has recently focused on the energy monitoring issue, with the objective of maximizing the user consumption awareness in building contexts on the one hand, and providing utilities with a detailed description of customer habits on the other. In particular, .Non-Intrusive Load Monitoring (NILM)., the subject of this book, .represents one of the hottest topics in Smart Grid applications.. NILM refers to those techniques aimed at decomposing the consumption-aggregated data acquired at a single point of measurement into the diverse consumption profiles of appliances operating in the electrical system under study.?.This book provides a status report on the most promising NILM methods, with an overview of the publically available dataset on which the algorithm and experiments are based. Of the proposed methods, those based on the Hidden Markov Model (HMM) and the Deep Neural Network (DNN) are the best performing and most interesting from the future improvement point of view.. One method from each category has been selected and the performance improvements achieved are described. Comparisons are made between the two reference techniques, and pros and cons are conside
出版日期Book 2020
關(guān)鍵詞Smart Grid; Non-Intrusive Load Monitoring (NILM); Deep Neural Network (DNN); Factorial Hidden Markov Mo
版次1
doihttps://doi.org/10.1007/978-3-030-30782-0
isbn_softcover978-3-030-30781-3
isbn_ebook978-3-030-30782-0Series ISSN 2191-5520 Series E-ISSN 2191-5539
issn_series 2191-5520
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring影響因子(影響力)




書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring網(wǎng)絡(luò)公開度




書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring被引頻次




書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring被引頻次學(xué)科排名




書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring年度引用




書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring年度引用學(xué)科排名




書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring讀者反饋




書目名稱Machine Learning Approaches to Non-Intrusive Load Monitoring讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:51:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:28:01 | 只看該作者
地板
發(fā)表于 2025-3-22 06:31:05 | 只看該作者
Roberto Bonfigli,Stefano Squartiniinnen konfrontiert, den die Planerinnen selbst hervorgerufen hatten. In ihren Augen war die ifu ein Vorgriff auf eine allgemeine Hochschulreform und in dieser Hinsicht als Pionierleistung für ?eine andere Universit?t“ zu sehen. Von den vielf?ltigen Zielen wurde der Hochschulreformcharakter, die Abse
5#
發(fā)表于 2025-3-22 10:28:20 | 只看該作者
6#
發(fā)表于 2025-3-22 13:08:36 | 只看該作者
7#
發(fā)表于 2025-3-22 20:00:40 | 只看該作者
Roberto Bonfigli,Stefano Squartinichungsergebnisse zum Diskurs um Lernen und Lehren in DiffereLehren und Lernen findet innerhalb gesellschaftlicher Verh?ltnisse statt, die von Differenzordnungen gepr?gt sind und oft unter den Labels Diversity, Heterogenit?t und Inklusion diskutiert werden. Die entlang von Markierungen wie etwa?.race
8#
發(fā)表于 2025-3-22 23:59:07 | 只看該作者
9#
發(fā)表于 2025-3-23 05:15:16 | 只看該作者
10#
發(fā)表于 2025-3-23 09:32:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连云港市| 湄潭县| 营山县| 开封县| 尤溪县| 敦煌市| 津南区| 武宁县| 台东县| 凤冈县| 堆龙德庆县| 上思县| 郎溪县| 彰化县| 郸城县| 元朗区| 汝州市| 乐至县| 安丘市| 昭苏县| 信丰县| 南充市| 渝北区| 许昌市| 平安县| 伊春市| 安陆市| 荔波县| 繁昌县| 宜城市| 尤溪县| 和林格尔县| 寻乌县| 南溪县| 萍乡市| 青河县| 拜泉县| 杨浦区| 石城县| 澎湖县| 增城市|