找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Applied to Composite Materials; Vinod Kushvaha,M. R. Sanjay,Suchart Siengchin Book 2022 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: analgesic
21#
發(fā)表于 2025-3-25 04:32:59 | 只看該作者
22#
發(fā)表于 2025-3-25 11:15:37 | 只看該作者
Applications of Machine Learning in the Field of Polymer Composites,al yet feasible product. Modeling the complex relationships between the various governing factors is extremely strenuous and generally requires the development of a mathematical tool. This has motivated researchers to look for time saving and less expensive computational techniques. Machine learning
23#
發(fā)表于 2025-3-25 15:37:32 | 只看該作者
24#
發(fā)表于 2025-3-25 17:08:01 | 只看該作者
25#
發(fā)表于 2025-3-25 23:05:21 | 只看該作者
26#
發(fā)表于 2025-3-26 01:43:00 | 只看該作者
Application of Machine Learning in Determining the Mechanical Properties of Materials,st range of applications. With evaluation in material characterization techniques large amounts of material data are obtained through experiments and simulations. Even in some cases theoretical concepts cannot be applicable to these data. With increase in material data, application of machine learni
27#
發(fā)表于 2025-3-26 05:24:44 | 只看該作者
Machine Learning Prediction for the Mechanical Properties of Lightweight Composite Materials, and high specific mechanical properties make composite materials a successor to those conventional metal alloys. Another benefit of composite materials is that their mechanical properties can be designed to meet the criteria for certain engineering applications. However, the mechanical properties o
28#
發(fā)表于 2025-3-26 10:46:53 | 只看該作者
Ballistic Performance of Bi-layer Graphene: Artificial Neural Network Based Molecular Dynamics Simuhe computationally expensive nature of large scale MD simulations frequently hinders a thorough understanding of material characterization. To mitigate this lacuna we demonstrated the successful integration of MD simulation with the artificial neural network (ANN). In this regard, the considered inp
29#
發(fā)表于 2025-3-26 15:49:39 | 只看該作者
30#
發(fā)表于 2025-3-26 16:56:02 | 只看該作者
Estimating Axial Load Capacity of Concrete-Filled Double-Skin Steel Tubular Columns of Multiple Shanner and outer steel tubes. The confined concrete behavior in these composite columns is affected by the shape of the inner and outer steel tubes. A new hybrid approach using genetic algorithm (GA)-optimized artificial neural networks (ANNs) is proposed in this study to estimate the axial load capac
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 01:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
从化市| 岳阳县| 红安县| 东光县| 哈尔滨市| 衡水市| 同仁县| 翼城县| 弥渡县| 莎车县| 龙南县| 兴文县| 乌审旗| 洞口县| 革吉县| 抚顺市| 汝州市| 文山县| 山阳县| 九江县| 大竹县| 沐川县| 墨玉县| 梅河口市| 鹿邑县| 桓仁| 汽车| 安国市| 长治县| 华安县| 九江县| 寿阳县| 绥江县| 华阴市| 清远市| 滨海县| 库伦旗| 稻城县| 临江市| 长子县| 田阳县|