找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Algorithms; Adversarial Robustne Fuwei Li,Lifeng Lai,Shuguang Cui Book 2022 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
查看: 27303|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:07:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning Algorithms
副標(biāo)題Adversarial Robustne
編輯Fuwei Li,Lifeng Lai,Shuguang Cui
視頻videohttp://file.papertrans.cn/621/620378/620378.mp4
概述Demonstrates how machine learning is widely used in signal processing.Investigates the adversarial robustness of signal processing algorithms.Conducts an attack on a principal regression problem
叢書名稱Wireless Networks
圖書封面Titlebook: Machine Learning Algorithms; Adversarial Robustne Fuwei Li,Lifeng Lai,Shuguang Cui Book 2022 The Editor(s) (if applicable) and The Author(s
描述.This book demonstrates?the optimal adversarial attacks against several important signal processing algorithms.?Through presenting the optimal attacks in wireless sensor networks, array signal processing, principal component analysis, etc, the authors reveal the robustness of the signal processing algorithms against adversarial attacks. Since data quality is crucial in signal processing, the adversary that can poison the data will be a significant threat to signal processing. Therefore, it is necessary and urgent to investigate the behavior of machine learning algorithms in signal processing under adversarial attacks.. . The authors in this book mainly examine the adversarial robustness of three commonly used machine learning algorithms in signal processing respectively: linear regression, LASSO-based feature selection, and principal component analysis (PCA). As to linear regression, the authors derive the optimal poisoning data sample and the optimal feature modifications, and also demonstrate the effectiveness of the attack against a wireless distributed learning system. The authors further extend the linear regression to LASSO-based feature selection and study the best strategy
出版日期Book 2022
關(guān)鍵詞Machine learning; adversarial machine learning; security-critical machine learning; interpretable machi
版次1
doihttps://doi.org/10.1007/978-3-031-16375-3
isbn_softcover978-3-031-16377-7
isbn_ebook978-3-031-16375-3Series ISSN 2366-1186 Series E-ISSN 2366-1445
issn_series 2366-1186
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning Algorithms影響因子(影響力)




書目名稱Machine Learning Algorithms影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Algorithms網(wǎng)絡(luò)公開度




書目名稱Machine Learning Algorithms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Algorithms被引頻次




書目名稱Machine Learning Algorithms被引頻次學(xué)科排名




書目名稱Machine Learning Algorithms年度引用




書目名稱Machine Learning Algorithms年度引用學(xué)科排名




書目名稱Machine Learning Algorithms讀者反饋




書目名稱Machine Learning Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:37:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:03:52 | 只看該作者
Fuwei Li,Lifeng Lai,Shuguang Cuider zumindest von au?erhalb des Gehirns auf das Gehirn einwirkende Noxe gerade immer wieder die typische Symptomatik zur Folge hat, ist nicht bekannt Der kausale Zusammenhang erscheint aber jedem klinischen Betrachter so evident, da? er nicht mehr in Zweifel gestellt werden kann und auch von jedem p
地板
發(fā)表于 2025-3-22 04:51:43 | 只看該作者
Fuwei Li,Lifeng Lai,Shuguang Cuider zumindest von au?erhalb des Gehirns auf das Gehirn einwirkende Noxe gerade immer wieder die typische Symptomatik zur Folge hat, ist nicht bekannt. Der kausale Zusammenhang erscheint aber jedem klinischen Betrachter so evident, da? er nicht mehr in Zweifel gestellt werden kann und auch von jedem
5#
發(fā)表于 2025-3-22 12:09:18 | 只看該作者
gen, so bildet die Perikarditis nur die Teilerscheinung einer .. Au?er beim Gelenkrheumatismus entwickeln sich, obschon weit seltener, zuweilen auch bei akuten Infektionskrankheiten ., so insbesondere beim ., bei den .,bei ., bei . (bei diesen zuweilen eitrige Perikarditis), beim . und . (h?morrhagi
6#
發(fā)表于 2025-3-22 14:34:14 | 只看該作者
7#
發(fā)表于 2025-3-22 17:53:04 | 只看該作者
8#
發(fā)表于 2025-3-22 23:20:10 | 只看該作者
9#
發(fā)表于 2025-3-23 02:48:10 | 只看該作者
10#
發(fā)表于 2025-3-23 06:03:58 | 只看該作者
On the Adversarial Robustness of Subspace Learning,ect. 4.2, we investigate the optimal rank-one attack strategy. We generalize our results to the case without the rank constraint in Sect. 4.3. In Sect. 4.4, we provide numerical experiments with both synthesized data and real data to illustrate results obtained in this paper. Finally, we offer concluding remarks in Sect. 4.5.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮安市| 平舆县| 平罗县| 芦溪县| 蚌埠市| 青田县| 沧源| 苏尼特左旗| 南澳县| 深水埗区| 牙克石市| 伊吾县| 湘潭县| 海晏县| 新沂市| 高台县| 黔江区| 洞头县| 西乡县| 德昌县| 凌海市| 丹阳市| 南召县| 天峻县| 堆龙德庆县| 贵州省| 遵义县| 绥德县| 天祝| 历史| 乌拉特后旗| 工布江达县| 遵化市| 宁河县| 内黄县| 邻水| 余江县| 文成县| 南郑县| 禹城市| 呼伦贝尔市|