找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning; The Basics Alexander Jung Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin

[復(fù)制鏈接]
查看: 6925|回復(fù): 50
樓主
發(fā)表于 2025-3-21 18:53:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning
副標(biāo)題The Basics
編輯Alexander Jung
視頻videohttp://file.papertrans.cn/621/620371/620371.mp4
概述Proposes a simple three-component approach to formalizing machine learning problems and methods.Interprets typical machine learning methods using the unified scientific cycle model: forming hypothesis
叢書名稱Machine Learning: Foundations, Methodologies, and Applications
圖書封面Titlebook: Machine Learning; The Basics Alexander Jung Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin
描述Machine learning (ML) has become a commonplace element in our everyday lives and a?standard tool for many fields of science and engineering. To make optimal use of ML, it is?essential to understand its underlying principles.?.This book approaches ML as the computational implementation of the scientific principle.?This principle consists of continuously adapting a model of a given data-generating?phenomenon by minimizing some form of loss incurred by its predictions.?.The book trains readers to break down various ML applications and methods in terms of?data, model, and loss, thus helping them to choose from the vast range of ready-made ML methods..The book’s three-component approach to ML provides uniform coverage of a wide range of?concepts and techniques. As a case in point, techniques for regularization, privacy-preservation?as well as explainability amount tospecific design choices for the model, data, and loss of a ML method.?.
出版日期Textbook 2022
關(guān)鍵詞Machine Learning; Modelling; Artificial Intelligence; Deep Learning; Optimization; Data Analysis; Signal P
版次1
doihttps://doi.org/10.1007/978-981-16-8193-6
isbn_softcover978-981-16-8195-0
isbn_ebook978-981-16-8193-6Series ISSN 2730-9908 Series E-ISSN 2730-9916
issn_series 2730-9908
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Machine Learning影響因子(影響力)




書目名稱Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Machine Learning網(wǎng)絡(luò)公開度




書目名稱Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning被引頻次




書目名稱Machine Learning被引頻次學(xué)科排名




書目名稱Machine Learning年度引用




書目名稱Machine Learning年度引用學(xué)科排名




書目名稱Machine Learning讀者反饋




書目名稱Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:19 | 只看該作者
Alexander Jungegungen waren das . und das . Ist nun eine Raumkurve . gegeben, so kann man ebenso die m?glichen Bewegungen einer Geraden t betrachten, bei denen sie stets Tangente von . bleibt. Durch diese Bedingung allein ist indes eine solche Bewegung der Geraden im Raum noch nicht eindeutig bestimmt, weil sie s
板凳
發(fā)表于 2025-3-22 01:31:28 | 只看該作者
Alexander JungDas der geographischen Ortsbestimmung dienende Gradnetz der Erde geht dabei in das Gradnetz des Globus über, das einerseits aus den Gro?kreisen besteht, die durch zwei diametral gegenüberliegende Punkte, den . und den ., gehen und . hei?en, und anderseits aus den Parallelkreisen, die die Meridiane r
地板
發(fā)表于 2025-3-22 06:43:26 | 只看該作者
5#
發(fā)表于 2025-3-22 08:48:43 | 只看該作者
Introduction, choose the right gear (clothing, wax) it is vital to have some idea for the maximum daytime temperature which is typically reached around early afternoon. If we expect a maximum daytime temperature of around plus 5 degrees, we might not put on the extra warm jacket but rather take only some extra s
6#
發(fā)表于 2025-3-22 16:37:06 | 只看該作者
7#
發(fā)表于 2025-3-22 20:29:02 | 只看該作者
8#
發(fā)表于 2025-3-23 00:26:11 | 只看該作者
Model Validation and Selection,s . that incurs minimum average loss on some labeled data points that serve as the .. We refer to the average loss incurred by a hypothesis on the training set as the training error. The minimum average loss achieved by a hypothesis that solves the ERM might be referred to as the training error of t
9#
發(fā)表于 2025-3-23 03:29:55 | 只看該作者
Feature Learning,urally from the available hard and software. For example, we might use the numeric measurement . delivered by a sensing device as a feature. However, we could augment this single feature with new features such as the powers . and . or adding a constant .. Each of these computations produces a new fe
10#
發(fā)表于 2025-3-23 08:13:02 | 只看該作者
Transparent and Explainable ML,rent (or explainable) as explainable ML. Providing explanations for the predictions of a ML method is particulary important when these predictions inform decision making [.]. Explanations for automated decision making system have become a legal requirement [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦江县| 长沙市| 呼伦贝尔市| 宁都县| 兴安县| 旺苍县| 清河县| 德庆县| 新建县| 衡南县| 利辛县| 黄大仙区| 铜山县| 内丘县| 泰顺县| 汉沽区| 盈江县| 巴彦县| 辛集市| 宝山区| 禄丰县| 安吉县| 南岸区| 涞水县| 鄂州市| 邹城市| 鄯善县| 张家港市| 繁峙县| 江门市| 牟定县| 锡林浩特市| 台中市| 宁城县| 濮阳县| 安西县| 同江市| 阿拉善左旗| 重庆市| 乾安县| 泉州市|