找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Intelligence and Big Data Analytics for Cybersecurity Applications; Yassine Maleh,Mohammad Shojafar,Youssef Baddi Book 2021 The Ed

[復(fù)制鏈接]
樓主: dabble
11#
發(fā)表于 2025-3-23 09:48:15 | 只看該作者
12#
發(fā)表于 2025-3-23 17:29:38 | 只看該作者
Ameliorated Face and Iris Recognition Using Deep Convolutional Networkseed to respond with superior accuracy for proof of identity and concurrently ensure ease of access. In this chapter we propose approaches using deep convolutional networks which give extremely accurate results with substantially smaller processing time for face and iris recognition. Two approaches b
13#
發(fā)表于 2025-3-23 21:13:46 | 只看該作者
Presentation Attack Detection Framework biometrics (e.g., face, eye, fingerprint), iris-based authentication is commonly used in every day applications. In iris-based authentication systems, iris images from legitimate users are captured and certain features are extracted to be used for matching during the authentication process. Literat
14#
發(fā)表于 2025-3-23 23:33:54 | 只看該作者
Classifying Common Vulnerabilities and Exposures Database Using Text Mining and Graph Theoretical Anat increase its usability. This results in focusing on some well-known vulnerabilities and leaving others during the security tests. Better classification of this dataset would result in finding solutions to a larger set of vulnerabilities/exposures. In this research, vulnerability and exposure data
15#
發(fā)表于 2025-3-24 04:38:35 | 只看該作者
A Novel Deep Learning Model to Secure Internet of Things in Healthcarerolling, and optimization. In this paper, an artificial neural network (ANN), a structure of deep learning model, is proposed to efficiently work with small datasets. The contribution of this paper is two-fold. First, we proposed a novel approach to build ANN architecture. Our proposed ANN structure
16#
發(fā)表于 2025-3-24 07:30:01 | 只看該作者
Secure Data Sharing Framework Based on Supervised Machine Learning Detection System for Future SDN-Brs may steal or perturb flows in SDN by performing several types of attacks such as address resolution protocol poisoning, main in the middle and rogue nodes attacks. These attacks are very harm full to SDN networks as they can be performed easily and passively at all SDN layers. Furthermore, data-s
17#
發(fā)表于 2025-3-24 11:14:26 | 只看該作者
18#
發(fā)表于 2025-3-24 16:52:30 | 只看該作者
Anjum Nazir,Rizwan Ahmed Khanngen (mit Ausnahme der physiologischen Wirkungsweise) kennen zu lehren und ihre Ergebnisse unter allgemeinen Gesichtspunkten miteinander zu verknüpfen hat. Nach dieser neuen, gegenüber früheren erheblich erweiterten Definition ist es die Aufgabe des pharmakognostischen Forschers, nicht nur die zu se
19#
發(fā)表于 2025-3-24 21:46:17 | 只看該作者
Youssef Gahi,Imane El Alaouingen (mit Ausnahme der physiologischen Wirkungsweise) kennen zu lehren und ihre Ergebnisse unter allgemeinen Gesichtspunkten miteinander zu verknüpfen hat. Nach dieser neuen, gegenüber früheren erheblich erweiterten Definition ist es die Aufgabe des pharmakognostischen Forschers, nicht nur die zu se
20#
發(fā)表于 2025-3-25 00:59:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 13:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙田区| 神农架林区| 乡城县| 喀喇| 公安县| 广州市| 鄂伦春自治旗| 广汉市| 延吉市| 邵阳市| 滨州市| 馆陶县| 金华市| 城口县| 沙雅县| 宿迁市| 洛川县| 中阳县| 金溪县| 万山特区| 清新县| 龙胜| 车险| 阿巴嘎旗| 都匀市| 吴旗县| 嘉义市| 连云港市| 鄂伦春自治旗| 崇左市| 嘉黎县| 普兰县| 城步| 南部县| 平南县| 巫山县| 陆丰市| 鹤壁市| 浦城县| 建宁县| 凤台县|