找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Intelligence Techniques for Data Analysis and Signal Processing; Proceedings of the 4 Dilip Singh Sisodia,Lalit Garg,M. Tanveer Con

[復(fù)制鏈接]
樓主: 召喚
11#
發(fā)表于 2025-3-23 11:25:36 | 只看該作者
Effective Heart Disease Prediction Using Hybrid Ensemble Learning Model,of ML techniques that ultimately results in improving the accuracy and performance. The prediction model is done with a fusion of attributes (features) and many familiar classification models. We generate an embellished performance of the model with an accuracy of 88.88% through hybrid ensemble learning model.
12#
發(fā)表于 2025-3-23 15:31:09 | 只看該作者
A SAR ATR Using a New Convolutional Neural Network Framework,thors anticipated a new convolutional neural network (CNN) for SAR object classification based of despeckling. The experiment is performed on the MSTAR dataset. Experimental results of the current study showed that the proposed CNN model has resulted in an excellent training accuracy of 99.67 % and validation accuracy of 98.98%.
13#
發(fā)表于 2025-3-23 19:49:20 | 只看該作者
ColCompNeT: Deep Learning-Based Colorization-Based Coding Network,en proposed in which concept of parallel training of colorization and compression network is utilized. With the proposed algorithm, a maximum bit saving of 36.45% is achieved with the improved objective and subjective performance when compared with the state-of-the-art methods.
14#
發(fā)表于 2025-3-23 22:54:41 | 只看該作者
15#
發(fā)表于 2025-3-24 05:09:15 | 只看該作者
,Texture Classification Using ResNet and?EfficientNet,per are the ResNetV2 and the EfficientNet-B4 paper. The proposed models are trained and tested on the Kylberg data set, a widely used texture data set. The two models attained accuracies of 99.78% and 92.97%, respectively.
16#
發(fā)表于 2025-3-24 10:03:29 | 只看該作者
17#
發(fā)表于 2025-3-24 13:29:33 | 只看該作者
d tritt erst nachtr?glich eine Korkhautbildung ein. Nur die durch ?ussere mechanische Ursachen veranlassten Wunden, durch welche innere lebende Gewebe blossgelegt und den nachtheiligen Einflüssen der Aussenwelt preisgegeben werden, geh?ren zu den pathologischen Erscheinungen.
18#
發(fā)表于 2025-3-24 16:08:46 | 只看該作者
Rahul Shrivastava,Dilip Singh Sisodia,Naresh Kumar Nagwanid tritt erst nachtr?glich eine Korkhautbildung ein. Nur die durch ?ussere mechanische Ursachen veranlassten Wunden, durch welche innere lebende Gewebe blossgelegt und den nachtheiligen Einflüssen der Aussenwelt preisgegeben werden, geh?ren zu den pathologischen Erscheinungen.
19#
發(fā)表于 2025-3-24 21:23:17 | 只看該作者
20#
發(fā)表于 2025-3-24 23:35:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
土默特左旗| 常山县| 嘉义市| 怀远县| 曲阜市| 江口县| 阿拉尔市| 区。| 修武县| 孝义市| 凤冈县| 滦南县| 绵竹市| 清河县| 清远市| 左权县| 罗江县| 崇文区| 萨嘎县| 阿尔山市| 新兴县| 海原县| 上虞市| 清新县| 吉安市| 石首市| 新平| 泰安市| 乐至县| 固阳县| 台前县| 三门峡市| 阿勒泰市| 阿拉善盟| 珠海市| 石阡县| 浦县| 新乡市| 济源市| 团风县| 临颍县|