找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Macdonald Polynomials; Commuting Family of Masatoshi Noumi Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復制鏈接]
查看: 13690|回復: 40
樓主
發(fā)表于 2025-3-21 17:45:16 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Macdonald Polynomials
副標題Commuting Family of
編輯Masatoshi Noumi
視頻videohttp://file.papertrans.cn/621/620331/620331.mp4
概述Provides an introduction to Macdonald polynomials requiring only an undergraduate knowledge of algebra and analysis.Presents selected topics that are easily accessible to readers with a background in
叢書名稱SpringerBriefs in Mathematical Physics
圖書封面Titlebook: Macdonald Polynomials; Commuting Family of  Masatoshi Noumi Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lice
描述This book is a volume of the Springer Briefs in Mathematical Physics and serves as an introductory textbook on the theory of Macdonald polynomials. It is based on a series of online lectures given by the author at the Royal Institute of Technology (KTH), Stockholm, in February and March 2021..?.Macdonald polynomials are a class of symmetric orthogonal polynomials in many variables. They include important classes of special functions such as Schur functions and Hall–Littlewood polynomials and play important roles in various fields of mathematics and mathematical physics. After an overview of Schur functions, the author introduces Macdonald polynomials (of type A, in the?.GL.n.?version) as eigenfunctions of a?.q.-difference operator, called the Macdonald–Ruijsenaars operator, in the ring of symmetric polynomials. Starting from this definition, various remarkable properties of Macdonald polynomials are explained, such as orthogonality, evaluation formulas, and self-duality, with emphasis on the roles of commuting?.q.-difference operators. The author also explains how Macdonald polynomials are formulated in the framework of affine Hecke algebras and?.q.-Dunkl operators..
出版日期Book 2023
關鍵詞symmetric functions; q-difference equation; q-orthogonal polynomial; quantum integrable system; Macdonal
版次1
doihttps://doi.org/10.1007/978-981-99-4587-0
isbn_softcover978-981-99-4586-3
isbn_ebook978-981-99-4587-0Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Macdonald Polynomials影響因子(影響力)




書目名稱Macdonald Polynomials影響因子(影響力)學科排名




書目名稱Macdonald Polynomials網(wǎng)絡公開度




書目名稱Macdonald Polynomials網(wǎng)絡公開度學科排名




書目名稱Macdonald Polynomials被引頻次




書目名稱Macdonald Polynomials被引頻次學科排名




書目名稱Macdonald Polynomials年度引用




書目名稱Macdonald Polynomials年度引用學科排名




書目名稱Macdonald Polynomials讀者反饋




書目名稱Macdonald Polynomials讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:53:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:15:26 | 只看該作者
地板
發(fā)表于 2025-3-22 07:50:50 | 只看該作者
5#
發(fā)表于 2025-3-22 09:50:39 | 只看該作者
Preliminaries on Symmetric Functions,In this section, we recall some basic material on symmetric functions as preliminaries to the theory of Schur functions and Macdonald polynomials.
6#
發(fā)表于 2025-3-22 16:33:33 | 只看該作者
,Macdonald Polynomials: Definition and?Examples,The Macdonald polynomials are defined as eigenfunctions of the Macdonald–Ruijsenaars .-difference operator acting on the ring of symmetric polynomials. We also investigate some special cases where Macdonald polynomials can be explicitly described, including the case of single rows.
7#
發(fā)表于 2025-3-22 21:01:14 | 只看該作者
,Orthogonality and?Higher-Order ,-Difference Operators,We show that the Macdonald polynomials satisfy the orthogonality relation with respect to a certain scalar product on the ring of symmetric polynomials. We also explain how this orthogonality is related with the existence of commuting family of higher-order .-difference operators for which Macdonald polynomials are joint eigenfunctions.
8#
發(fā)表于 2025-3-23 00:40:41 | 只看該作者
https://doi.org/10.1007/978-981-99-4587-0symmetric functions; q-difference equation; q-orthogonal polynomial; quantum integrable system; Macdonal
9#
發(fā)表于 2025-3-23 02:12:36 | 只看該作者
10#
發(fā)表于 2025-3-23 06:26:26 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阳信县| 措美县| 浠水县| 竹溪县| 咸宁市| 罗定市| 喀喇沁旗| 延长县| 汝州市| 枝江市| 和平区| 井冈山市| 嘉义县| 东宁县| 安平县| 邵武市| 泸定县| 福海县| 荣成市| 昌江| 洛阳市| 天等县| 泸水县| 沙湾县| 江达县| 康乐县| 驻马店市| 南丰县| 色达县| 高清| 太仓市| 米泉市| 共和县| 家居| 常宁市| 景谷| 长丰县| 三河市| 普格县| 桃园市| 阳高县|