找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: L’H?pital‘s Analyse des infiniments petits; An Annotated Transla Robert E Bradley,Salvatore J. Petrilli,C. Edward S Book 2015 Springer Inte

[復(fù)制鏈接]
樓主: FLAW
51#
發(fā)表于 2025-3-30 09:22:24 | 只看該作者
The Solution of Several Problems That Depend upon the Previous Methods,in Chapters?.–. This chapter begins with the celebrated theorem that now goes by the name L’H?pital’s Rule. This rule is actually due to Bernoulli, and the version given here only covers the case in which . takes the indeterminate form . at a finite value of .. Much of the rest of the chapter is taken up with a study of the epicycloid.
52#
發(fā)表于 2025-3-30 12:57:14 | 只看該作者
Use of the Differential Calculus for Finding Inflection Points and Cusps,are nevertheless useful in this and subsequent chapters for describing certain curves. L’H?pital?finds the inflection points of the prolate cycloid, the Conchoid of Nicomedes and of a curve that is essentially the same as the “Witch of Agnesi.”
53#
發(fā)表于 2025-3-30 18:10:47 | 只看該作者
54#
發(fā)表于 2025-3-31 00:13:48 | 只看該作者
,Selected Letters from the Correspondence Between the Marquis de L’H?pital and Johann Bernoulli,he rights to publish some of Bernoulli’s discoveries. There is also the letter of July 22, 1694, where L’H?pital’s Rule appears for the first time. There are also many details of a personal or professional nature that illuminate the complex friendship between these two men.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆昌县| 调兵山市| 东源县| 达拉特旗| 布尔津县| 淮北市| 安国市| 辽源市| 禹城市| 苗栗县| 新巴尔虎右旗| 墨脱县| 锡林浩特市| 密云县| 沾益县| 连平县| 岫岩| 隆回县| 临澧县| 孝昌县| 华宁县| 永和县| 隆安县| 鄢陵县| 乐至县| 陆河县| 福安市| 桐柏县| 长海县| 福泉市| 兴山县| 泰宁县| 喀喇沁旗| 融水| 绿春县| 阜宁县| 乐东| 林西县| 东阳市| 黄陵县| 许昌市|