找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lyapunov Inequalities and Applications; Ravi P. Agarwal,Martin Bohner,Abdullah ?zbekler Book 2021 The Editor(s) (if applicable) and The Au

[復制鏈接]
查看: 29299|回復: 42
樓主
發(fā)表于 2025-3-21 19:54:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lyapunov Inequalities and Applications
編輯Ravi P. Agarwal,Martin Bohner,Abdullah ?zbekler
視頻videohttp://file.papertrans.cn/590/589174/589174.mp4
概述Provides a comprehensive, neatly organized survey on Lyapunov-type inequalities.Covers applications of Lyapunov-type inequalities in boundary value problems, systems of differential equations, PDEs, d
圖書封面Titlebook: Lyapunov Inequalities and Applications;  Ravi P. Agarwal,Martin Bohner,Abdullah ?zbekler Book 2021 The Editor(s) (if applicable) and The Au
描述.This book provides an extensive survey on Lyapunov-type inequalities. It summarizes and puts order into a vast literature available on the subject, and sketches recent developments in this topic. In an elegant and didactic way, this work presents the concepts underlying Lyapunov-type inequalities, covering how they developed and what kind of problems they address...This survey starts by introducing basic applications of Lyapunov’s inequalities. It then advances towards even-order, odd-order, and higher-order boundary value problems; Lyapunov and Hartman-type inequalities; systems of linear, nonlinear, and quasi-linear differential equations; recent developments in Lyapunov-type inequalities; partial differential equations; linear difference equations; and Lyapunov-type inequalities for linear, half-linear, and nonlinear dynamic equations on time scales, as well as linear Hamiltonian dynamic systems...Senior undergraduate students and graduate students of mathematics, engineering, and science will benefit most from this book, as well as researchers in the areas of ordinary differential equations, partial differential equations, difference equations, and dynamic equations. Some back
出版日期Book 2021
關鍵詞analysis; Lyapunov; PDE; Lyapunov inequalities; boundary conditions; difference equations; differential eq
版次1
doihttps://doi.org/10.1007/978-3-030-69029-8
isbn_ebook978-3-030-69029-8
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Lyapunov Inequalities and Applications影響因子(影響力)




書目名稱Lyapunov Inequalities and Applications影響因子(影響力)學科排名




書目名稱Lyapunov Inequalities and Applications網(wǎng)絡公開度




書目名稱Lyapunov Inequalities and Applications網(wǎng)絡公開度學科排名




書目名稱Lyapunov Inequalities and Applications被引頻次




書目名稱Lyapunov Inequalities and Applications被引頻次學科排名




書目名稱Lyapunov Inequalities and Applications年度引用




書目名稱Lyapunov Inequalities and Applications年度引用學科排名




書目名稱Lyapunov Inequalities and Applications讀者反饋




書目名稱Lyapunov Inequalities and Applications讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:13:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:57:34 | 只看該作者
onlinear dynamics. The tools needed to study chaotic phenomena are entirely different from those used to study periodic or quasi-periodic systems; these tools a978-1-4612-7386-8978-1-4612-2024-4Series ISSN 2297-0371 Series E-ISSN 2297-0398
地板
發(fā)表于 2025-3-22 05:24:23 | 只看該作者
5#
發(fā)表于 2025-3-22 10:02:40 | 只看該作者
6#
發(fā)表于 2025-3-22 14:12:35 | 只看該作者
Lyapunov-Type Inequalities for Higher-Order Linear Differential Equations,In this chapter, we give a survey of the most basic results on Lyapunov-type inequalities for higher-order linear differential equations and sketch some recent developments related to this type of inequalities.
7#
發(fā)表于 2025-3-22 20:00:27 | 只看該作者
Lyapunov-Type Inequalities for Half-Linear Differential Equations,In this chapter, we give a survey of the most basic results on Lyapunov-type inequalities for second-order, third-order, and higher-order half-linear differential equations and sketch some recent developments related to this type of inequalities.
8#
發(fā)表于 2025-3-23 00:16:27 | 只看該作者
Lyapunov-Type Inequalities for Nonlinear Differential Systems,In this chapter, we give a survey of the most basic results on Lyapunov-type inequalities for second-order nonlinear systems of differential equations under some boundary conditions. We also sketch some recent developments related to this type of inequalities.
9#
發(fā)表于 2025-3-23 02:26:45 | 只看該作者
Lyapunov-Type Inequalities for Fractional Differential Equations,In this chapter, we give a survey of the most basic results on Lyapunov-type inequalities for fractional differential equations, and we sketch some recent developments related to this type of inequalities.
10#
發(fā)表于 2025-3-23 07:36:32 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
保亭| 鄱阳县| 张家港市| 砚山县| 永顺县| 杂多县| 松滋市| 司法| 万全县| 华池县| 东至县| 台北县| 海阳市| 六枝特区| 瑞昌市| 礼泉县| 泰和县| 屏边| 黑山县| 龙海市| 东方市| 都匀市| 怀来县| 沐川县| 青海省| 寿阳县| 德惠市| 平潭县| 临朐县| 武陟县| 岑巩县| 安康市| 屏边| 安宁市| 玉林市| 五指山市| 淅川县| 宁波市| 临邑县| 金山区| 龙井市|