找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Luftschl?sser und Hirngespinste; Bekannte und unbekan Albrecht Beutelspacher Book 1986 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braun

[復(fù)制鏈接]
樓主: 清楚明確
21#
發(fā)表于 2025-3-25 07:10:42 | 只看該作者
22#
發(fā)表于 2025-3-25 08:47:07 | 只看該作者
Kariertes Papier,Grundrechenarten geübt, ?Schiffe versenken ‘gespielt, sp?ter verwegene Konstruktionen mit Zirkel und Lineal fabriziert und endlich 1001 Kurven diskutiert! Und dieses karierte Papier soll uns noch etwas Neues bieten k?nnen, vielleicht sogar etwas Reizvolles und Apartes?
23#
發(fā)表于 2025-3-25 13:56:26 | 只看該作者
,Wer z?hlt die V?lker, nennt die Namen? oder Die EULERsche Polyederformel,ich nützliche Formel herleiten, die auf den gro?en Mathematiker L. Euler (1707–1783) zurückgeht. Diese ?Eulersche Polyederformel“ stellt einen Zusammenhang zwischen den Anzahlen der L?nder, Grenzen und ?Ecken“ einer beliebigen Landkarte her.
24#
發(fā)表于 2025-3-25 19:54:10 | 只看該作者
,Regul?re K?rper — ein antikes Sch?nheitsideal,ate), regul?re Fünfecke, Sechsecke, usw. Für jede natürliche Zahl n ≥ 3 gibt es ein regul?res n-Eck. Jahrtausendeland haben sich die Mathematiker damit besch?ftigt, zu erforschen, welche davon mit Zirkel und Lineal allein zu konstruieren sind. Damit wollen wir uns aber hier nicht besch?ftigen; unser
25#
發(fā)表于 2025-3-25 22:56:33 | 只看該作者
26#
發(fā)表于 2025-3-26 04:08:55 | 只看該作者
27#
發(fā)表于 2025-3-26 05:27:31 | 只看該作者
Wie findet man aus einem Labyrinth wieder heraus? oder Mathematik ersetzt den Ariadnefaden,elegten Faden sich orientierend war es für Theseus dann kein Problem mehr, wieder aus dem Labyrinth herauszukommen. Die folgende Abbildung dieser Geschichte wurde in Pompeji entdeckt. (Aus diesem einfachen Labyrinth h?tte Theseus übrigens auch ohne Ariadnefaden wieder herausgefunden.)*
28#
發(fā)表于 2025-3-26 09:03:14 | 只看該作者
29#
發(fā)表于 2025-3-26 14:53:20 | 只看該作者
,Regul?re K?rper — ein antikes Sch?nheitsideal,t besch?ftigt, zu erforschen, welche davon mit Zirkel und Lineal allein zu konstruieren sind. Damit wollen wir uns aber hier nicht besch?ftigen; unser Ziel soll vielmehr sein, zu sehen, was den regul?ren n-Ecken im Raum entspricht. Die entsprechenden Gebilde werden wir . nennen.
30#
發(fā)表于 2025-3-26 19:02:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉中市| 雅安市| 年辖:市辖区| 新宾| 铜川市| 霍邱县| 蓝山县| 七台河市| 绿春县| 白城市| 民勤县| 孟连| 林口县| 武宣县| 肃北| 昌都县| 西盟| 喀喇沁旗| 咸丰县| 花莲市| 榆社县| 晋州市| 景东| 北碚区| 车险| 兴和县| 邯郸县| 巴彦淖尔市| 青冈县| 深泽县| 札达县| 察隅县| 施秉县| 个旧市| 河北省| 从江县| 固镇县| 阿拉善右旗| 宁国市| 左云县| 贡嘎县|