找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Low Resource Social Media Text Mining; Shriphani Palakodety,Ashiqur R. KhudaBukhsh,Guha J Book 2021 The Author(s), under exclusive license

[復(fù)制鏈接]
查看: 32686|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:27:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Low Resource Social Media Text Mining
編輯Shriphani Palakodety,Ashiqur R. KhudaBukhsh,Guha J
視頻videohttp://file.papertrans.cn/589/588810/588810.mp4
概述Introduces the various challenges associated with social media content and quantifies these issues.Features methods that are unsupervised or require minimal supervision.Is designed for NLP practitione
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Low Resource Social Media Text Mining;  Shriphani Palakodety,Ashiqur R. KhudaBukhsh,Guha J Book 2021 The Author(s), under exclusive license
描述.This book focuses on methods that are unsupervised or require minimal supervision—vital in the low-resource domain. Over the past few years, rapid growth in Internet access across the globe has resulted in an explosion in user-generated text content in social media platforms. This effect is significantly pronounced in linguistically diverse areas of the world like South Asia, where over 400 million people regularly access social media platforms. YouTube, Facebook, and Twitter report a monthly active user base in excess of 200 million from this region. Natural language processing (NLP) research and publicly available resources such as models and corpora prioritize Web content authored primarily by a Western user base. Such content is authored in English by a user base fluent in the language and can be processed by a broad range of off-the-shelf NLP tools. In contrast, text from linguistically diverse regions features high levels of multilinguality, code-switching, and varied languageskill levels. Resources like corpora and models are also scarce. Due to these factors, newer methods are needed to process such text...This book is designed for NLP practitioners well versed in recent a
出版日期Book 2021
關(guān)鍵詞Natural Language Processing; Machine Learning; Text Mining; Social Media; Data Mining
版次1
doihttps://doi.org/10.1007/978-981-16-5625-5
isbn_softcover978-981-16-5624-8
isbn_ebook978-981-16-5625-5Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Low Resource Social Media Text Mining影響因子(影響力)




書目名稱Low Resource Social Media Text Mining影響因子(影響力)學(xué)科排名




書目名稱Low Resource Social Media Text Mining網(wǎng)絡(luò)公開度




書目名稱Low Resource Social Media Text Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Low Resource Social Media Text Mining被引頻次




書目名稱Low Resource Social Media Text Mining被引頻次學(xué)科排名




書目名稱Low Resource Social Media Text Mining年度引用




書目名稱Low Resource Social Media Text Mining年度引用學(xué)科排名




書目名稱Low Resource Social Media Text Mining讀者反饋




書目名稱Low Resource Social Media Text Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:02:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:57:57 | 只看該作者
Language Identification,rmulations of the language identification task, briefly discuss supervised solutions, and then present low-supervision methods based on polyglot training that are highly applicable in low-resource settings. We then discuss code mixing, a linguistic phenomenon common in bilingual and multilingual spe
地板
發(fā)表于 2025-3-22 07:31:36 | 只看該作者
Low Resource Machine Translation,pora. We discuss popular methods, and applications to low-resource settings. We further investigate the application of polyglot training to this field and present new promising directions for unsupervised machine translation.
5#
發(fā)表于 2025-3-22 12:44:30 | 只看該作者
6#
發(fā)表于 2025-3-22 13:14:46 | 只看該作者
7#
發(fā)表于 2025-3-22 18:10:31 | 只看該作者
8#
發(fā)表于 2025-3-22 22:47:19 | 只看該作者
9#
發(fā)表于 2025-3-23 02:32:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:00:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿合奇县| 滁州市| 隆林| 甘孜县| 张家港市| 中超| 襄垣县| 会同县| 额尔古纳市| 密云县| 志丹县| 宁南县| 渝北区| 大悟县| 德庆县| 苏尼特右旗| 宜城市| 三亚市| 平顶山市| 南京市| 兖州市| 方正县| 清镇市| 太湖县| 桓台县| 台湾省| 池州市| 临夏县| 大埔区| 定陶县| 玛沁县| 华坪县| 会宁县| 西藏| 朔州市| 东安县| 东城区| 滨海县| 新绛县| 信丰县| 通化县|