找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Loop Parallelization; Utpal Banerjee Book 1994 Springer Science+Business Media New York 1994 DEX.Fortran.Permutation.Turing.Volume.algorit

[復(fù)制鏈接]
樓主: PLY
11#
發(fā)表于 2025-3-23 12:00:55 | 只看該作者
12#
發(fā)表于 2025-3-23 17:05:29 | 只看該作者
Utpal Banerjee also known as a .. The ED string matching (EDSM) problem consists in reporting all occurrences of a pattern of length . in an ED text. The EDSM problem has recently received some attention by the combinatorial pattern matching community, culminating in an .-time algorithm [Bernardini et al., SIAM J
13#
發(fā)表于 2025-3-23 19:13:56 | 只看該作者
Utpal Banerjeected Acyclic Graph (DAG) where vertices represent versions of the software, and arcs are the changes between different versions. We assume that somewhere in the DAG, a bug was introduced, which persists in all of its subsequent versions. It is possible to query a vertex to check whether the correspo
14#
發(fā)表于 2025-3-24 02:08:39 | 只看該作者
Utpal Banerjeerees are designed with the aim to get a tree as balanced as possible. This goal is attained by heuristics that choose for each node of the .-d tree the appropriate coordinate to discriminate. In the case of median .-d trees, the chosen dimension to discriminate at each node is the one whose point va
15#
發(fā)表于 2025-3-24 03:10:27 | 只看該作者
16#
發(fā)表于 2025-3-24 10:23:12 | 只看該作者
Utpal Banerjeeirst impression is that such a property is quite particular, it is more general than Hamiltonicity on planar graphs since a planar graph satisfies the Yutsis property if and only if its dual is Hamiltonian. Despite the fact that recognizing Yutsis graphs is NP-complete even on planar graphs, it is s
17#
發(fā)表于 2025-3-24 14:45:19 | 只看該作者
18#
發(fā)表于 2025-3-24 18:37:45 | 只看該作者
19#
發(fā)表于 2025-3-24 21:27:05 | 只看該作者
20#
發(fā)表于 2025-3-25 01:15:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江北区| 吉首市| 治多县| 阳高县| 伊通| 华宁县| 渝北区| 阿巴嘎旗| 宁武县| 青浦区| 朝阳县| 屯门区| 梅州市| 应城市| 中阳县| 横山县| 武冈市| 阿勒泰市| 清镇市| 扎兰屯市| 班玛县| 庆云县| 固原市| 新兴县| 介休市| 武城县| 江陵县| 青浦区| 辽宁省| 炉霍县| 北川| 延寿县| 安仁县| 灵武市| 渝中区| 曲水县| 延川县| 温宿县| 长春市| 绥芬河市| 兖州市|