找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logistic Regression; A Self-Learning Text David G. Kleinbaum Textbook 19941st edition Springer Science+Business Media New York 1994 class.d

[復(fù)制鏈接]
樓主: Wilson
21#
發(fā)表于 2025-3-25 04:23:07 | 只看該作者
22#
發(fā)表于 2025-3-25 11:15:18 | 只看該作者
Important Special Cases of the Logistic Model,ding odds ratio expressions. In particular, focus is on defining the independent variables that go into the model and on computing the odds ratio for each special case. Models that account for the potential confounding effects and potential interaction effects of covariates are emphasized.
23#
發(fā)表于 2025-3-25 15:09:52 | 只看該作者
Maximum Likelihood Techniques: An Overview, We also distinguish between two alternative ML methods, called the unconditional and the conditional approaches, and we give guidelines regarding how the applied user can choose between these methods. Finally, we provide a brief overview of how to make statistical inferences using ML estimates.
24#
發(fā)表于 2025-3-25 18:03:59 | 只看該作者
25#
發(fā)表于 2025-3-25 21:04:00 | 只看該作者
26#
發(fā)表于 2025-3-26 00:07:57 | 只看該作者
Analysis of Matched Data Using Logistic Regression,stratification to carry out a matched analysis. Our primary focus is on case-control studies. We then introduce the logistic model for matched data and describe the corresponding odds ratio formula. Finally, we illustrate the analysis of matched data using logistic regression with an application tha
27#
發(fā)表于 2025-3-26 06:05:35 | 只看該作者
28#
發(fā)表于 2025-3-26 09:50:06 | 只看該作者
Computing the Odds Ratio in Logistic Regression,In this chapter, the .. is extended to consider other coding schemes for a single exposure variable, including ordinal and interval exposures. The model is further extended to allow for several exposure variables. The formula for the odds ratio is provided for each extension, and examples are used to illustrate the formula.
29#
發(fā)表于 2025-3-26 13:32:31 | 只看該作者
30#
發(fā)表于 2025-3-26 16:52:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锦屏县| 江山市| 简阳市| 连江县| 长垣县| 洪雅县| 清远市| 五家渠市| 永定县| 双辽市| 筠连县| 泸州市| 九龙坡区| 古田县| 泸定县| 红桥区| 百色市| 乾安县| 赤水市| 安义县| 马山县| 太谷县| 晴隆县| 新津县| 蓬安县| 大埔区| 新田县| 新营市| 常宁市| 南宫市| 阳信县| 贵州省| 大石桥市| 东兰县| 会昌县| 长岭县| 依安县| 昭平县| 泰和县| 吉林市| 云林县|