找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Rewriting, and Concurrency; Essays Dedicated to Narciso Martí-Oliet,Peter Csaba ?lveczky,Carolyn T Book 2015 Springer International

[復(fù)制鏈接]
樓主: 女孩
51#
發(fā)表于 2025-3-30 11:22:33 | 只看該作者
52#
發(fā)表于 2025-3-30 12:48:06 | 只看該作者
53#
發(fā)表于 2025-3-30 19:17:05 | 只看該作者
54#
發(fā)表于 2025-3-30 23:36:12 | 只看該作者
Modularity of Ontologies in an Arbitrary Institution,at are relevant to certain concepts of interest (formalised as a subsignature). The technical concept used for the definition of module extraction is that of inseparability, which is related to indistinguishability known from observational specifications..Module extraction has been studied mainly fo
55#
發(fā)表于 2025-3-31 04:45:36 | 只看該作者
Network-on-Chip Firewall: Countering Defective and Malicious System-on-Chip Hardware,on-Chip (SoC), which integrates microprocessors and peripheral Intellectual Property (IP) connected by a Network-on-Chip (NoC). Malicious IP or software could compromise critical data. Some types of attacks can be blocked by controlling data transfers on the NoC using Memory Management Units (MMUs)
56#
發(fā)表于 2025-3-31 07:05:37 | 只看該作者
57#
發(fā)表于 2025-3-31 13:11:08 | 只看該作者
Hélene Kirchnerge number of illustrative examples are provided throughout?.This is a foundation for arithmetic topology - a new branch of mathematics which is focused upon the analogy between knot theory and number theory.? ? Starting with an informative introduction to its origins, namely Gauss, this text provide
58#
發(fā)表于 2025-3-31 14:47:22 | 只看該作者
Michael LeMay,Carl A. Gunters and researchers.Includes useful problems guiding future stThis book provides a foundation for arithmetic topology, a new branch of mathematics that investigates the analogies between the topology of knots, 3-manifolds, and the arithmetic of number fields. Arithmetic topology is now becoming a powe
59#
發(fā)表于 2025-3-31 18:51:06 | 只看該作者
10樓
60#
發(fā)表于 2025-3-31 23:46:29 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 11:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌恰县| 土默特左旗| 成都市| 玉环县| 稷山县| 建昌县| 三江| 尖扎县| 涪陵区| 铜陵市| 华池县| 汶川县| 莎车县| 石河子市| 双辽市| 剑川县| 嫩江县| 青铜峡市| 万宁市| 佳木斯市| 毕节市| 无极县| 神木县| 阜平县| 琼海市| 六枝特区| 高清| 邓州市| 松桃| 阿鲁科尔沁旗| 兴国县| 阳春市| 贺州市| 岗巴县| 屯门区| 钟山县| 栖霞市| 高唐县| 沅陵县| 徐闻县| 隆子县|