找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Rationality, and Interaction; Second International Xiangdong He,John Horty,Eric Pacuit Conference proceedings 2009 Springer-Verlag B

[復(fù)制鏈接]
樓主: LANK
51#
發(fā)表于 2025-3-30 08:33:48 | 只看該作者
52#
發(fā)表于 2025-3-30 14:56:40 | 只看該作者
53#
發(fā)表于 2025-3-30 18:41:26 | 只看該作者
54#
發(fā)表于 2025-3-30 22:17:19 | 只看該作者
55#
發(fā)表于 2025-3-31 03:57:56 | 只看該作者
A General Family of Preferential Belief Removal Operatorsn [5]. However it is not always reasonable to assume completeness of the underlying ordering. In this paper we generalise the structure of [5] to allow incomparabilities between worlds. We axiomatise the resulting class of belief removal functions, and show that it includes an important family of removal functions based on ..
56#
發(fā)表于 2025-3-31 05:27:53 | 只看該作者
Dynamic Testimonial Logiciefs about the . of other agents, we add “authority graphs” to DTL models to capture agents’ . in other agents’ testimony. For DTL’s dynamic testimony operator, we give complete reduction axioms. Finally, we describe an application of DTL in modeling ..
57#
發(fā)表于 2025-3-31 12:06:03 | 只看該作者
From the Logical Point of View: The Chain Store Paradox Revisitedties take only the values 1 and 0, requiring a non-Bayesian account of belief revision. In this paper, we propose a situation-theoretic diagnosis and solution to the paradox, based on the conception of Austinian propositions relativized to particular situations, as developed by Barwise and Etchemendy.
58#
發(fā)表于 2025-3-31 17:02:28 | 只看該作者
59#
發(fā)表于 2025-3-31 19:20:05 | 只看該作者
Epistemic Games in Modal Logic: Joint Actions, Knowledge and Preferences All Togetherudy in . the epistemic and rationality conditions of some classical solution concepts like Nash equilibrium and iterated strict dominance. In the last part of the paper we combine . with Dynamic Epistemic Logic (DEL) in order to model epistemic game dynamics.
60#
發(fā)表于 2025-3-31 22:25:27 | 只看該作者
An Epistemic Logic for Planning with Trialsseem well suited to formalize the reasoning in such contexts. We study a simple such logic for one planning agent making bounded plans, for which we give a complete axiomatization and prove decidability. We discuss preliminary results for extensions to multi-agent plans as well as unbounded plans.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长岛县| 本溪市| 汉沽区| 库伦旗| 华阴市| 罗定市| 高邑县| 沐川县| 千阳县| 泗水县| 武安市| 左云县| 兴业县| 北票市| 洛南县| 金沙县| 丽水市| 大竹县| 浙江省| 那曲县| 仙游县| 金川县| 赫章县| 宣威市| 大石桥市| 哈密市| 镇平县| 应用必备| 松溪县| 南漳县| 察雅县| 浮山县| 湛江市| 内丘县| 台南市| 闵行区| 赤城县| 广平县| 蚌埠市| 武平县| 梁平县|