找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Rationality, and Interaction; 6th International Wo Alexandru Baltag,Jeremy Seligman,Tomoyuki Yamada Conference proceedings 2017 Spri

[復(fù)制鏈接]
樓主: Localized
21#
發(fā)表于 2025-3-25 06:06:59 | 只看該作者
The Stubborn Non-probabilist—‘Negation Incoherence’ and a New Way to Block the Dutch Book ArgumentWe rigorously specify the class of nonprobabilistic agents which are, we argue, immune to the classical Dutch Book argument. We also discuss the notion of expected value used in the argument as well as sketch future research connecting our results to those concerning incoherence measures.
22#
發(fā)表于 2025-3-25 11:20:10 | 只看該作者
23#
發(fā)表于 2025-3-25 15:00:01 | 只看該作者
Logic, Rationality, and Interaction978-3-662-55665-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
24#
發(fā)表于 2025-3-25 17:50:58 | 只看該作者
An Extended First-Order Belnap-Dunn Logic with Classical Negation this logic and prove theorems for syntactically and semantically embedding FBD+ into a Gentzen-type sequent calculus for first-order classical logic. Moreover, we show the cut-elimination theorem for FBD+ and prove the completeness theorems with respect to both valuation and many-valued semantics for FBD+.
25#
發(fā)表于 2025-3-25 23:47:35 | 只看該作者
Stability in Binary Opinion Diffusionudied via techniques from binary aggregation, which directly relate to neighborhood frames. It then characterizes stabilization in terms of such neighborhood structures, and shows how the monotone .-calculus can express relevant properties of them. Finally, it illustrates the scope of these results by applying them to specific diffusion models.
26#
發(fā)表于 2025-3-26 01:55:20 | 只看該作者
Doing Without Naturephic image of .. This generalizes an earlier result from Van Benthem and Pacuit [.] about finite two-player choice models. It further strengthens the link between STIT logic and game theory, because deterministic choice models correspond in a straightforward way to normal game forms, and choice models are generally used to interpret STIT logic.
27#
發(fā)表于 2025-3-26 06:31:19 | 只看該作者
28#
發(fā)表于 2025-3-26 10:41:36 | 只看該作者
29#
發(fā)表于 2025-3-26 13:21:37 | 只看該作者
30#
發(fā)表于 2025-3-26 20:34:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神农架林区| 咸宁市| 宿迁市| 普宁市| 楚雄市| 左权县| 电白县| 扬州市| 罗平县| 广昌县| 循化| 拉孜县| 青川县| 平南县| 连云港市| 米泉市| 名山县| 开化县| 黄大仙区| 台北县| 安徽省| 荥阳市| 马龙县| 正镶白旗| 永昌县| 克山县| 理塘县| 体育| 集安市| 龙陵县| 大名县| 龙海市| 西平县| 蒙自县| 石家庄市| 竹溪县| 民权县| 廉江市| 白玉县| 资兴市| 赤壁市|