找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic and Its Applications; 8th Indian Conferenc Md. Aquil Khan,Amaldev Manuel Conference proceedings 2019 Springer-Verlag GmbH Germany, pa

[復制鏈接]
樓主: Grant
21#
發(fā)表于 2025-3-25 04:25:21 | 只看該作者
22#
發(fā)表于 2025-3-25 09:22:04 | 只看該作者
23#
發(fā)表于 2025-3-25 15:14:43 | 只看該作者
24#
發(fā)表于 2025-3-25 19:47:10 | 只看該作者
The Finite Embeddability Property for Topological Quasi-Boolean Algebra 5,In this paper we study some basic algebraic structures of rough algebras. We proved that the class of topological quasi-Boolean algebra 5s (tqBa5s) has the finite embeddability property (FEP). Further we also extend this result to some related classes of algebras.
25#
發(fā)表于 2025-3-25 23:31:06 | 只看該作者
Model Theory for Sheaves of Modules,We describe how the model theory of modules is adapted to deal with sheaves of modules.
26#
發(fā)表于 2025-3-26 02:00:44 | 只看該作者
27#
發(fā)表于 2025-3-26 06:31:50 | 只看該作者
28#
發(fā)表于 2025-3-26 10:20:27 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/l/image/587973.jpg
29#
發(fā)表于 2025-3-26 13:11:45 | 只看該作者
Infinite Liar in a (Modal) Finitistic Setting, uniform disquotation or the .-rule results in inconsistency. One might think that it doesn’t arise in finitary contexts. We study whether it does. It turns out that the issue turns on how the finitistic approach is formalized.
30#
發(fā)表于 2025-3-26 19:03:34 | 只看該作者
Public Announcements for Epistemic Models and Hypertheories,ith public announcements and the corresponding belief change operation. We establish a soundness and completeness result and show that our model update operation satisfies the AGM postulate of minimal change. Further, we also show that the standard approach cannot be directly employed to capture knowledge change by truthful announcements.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
达尔| 巴中市| 阿克陶县| 沿河| 湘阴县| 曲靖市| 高雄市| 阳高县| 明水县| 施甸县| 平南县| 连云港市| 静乐县| 纳雍县| 莱西市| 同江市| 永胜县| 永和县| 合阳县| 洮南市| 揭西县| 博野县| 蓬莱市| 澄江县| 喀什市| 莲花县| 雅安市| 延长县| 阿图什市| 张家港市| 绥宁县| 白朗县| 沁源县| 慈溪市| 闸北区| 丰城市| 枝江市| 汕头市| 喜德县| 炉霍县| 夏邑县|