找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic and Its Applications; 7th Indian Conferenc Sujata Ghosh,Sanjiva Prasad Conference proceedings 2017 Springer-Verlag GmbH Germany 2017

[復(fù)制鏈接]
樓主: Hypothesis
11#
發(fā)表于 2025-3-23 11:17:45 | 只看該作者
12#
發(fā)表于 2025-3-23 14:06:30 | 只看該作者
13#
發(fā)表于 2025-3-23 19:57:01 | 只看該作者
Ancient Indian Logic and Analogy,du Syllogism) from Gotama’s Nyāya-Sūtra in terms of a binary . relation. In this paper we provide a rational justification of a version of this reading as Analogical Reasoning within the framework of Polyadic Pure Inductive Logic.
14#
發(fā)表于 2025-3-24 02:11:49 | 只看該作者
Computational Complexity of a Hybridized Horn Fragment of Halpern-Shoham Logic,mporal logics. In the paper, we hybridize a Horn fragment of Halpern-Shoham logic whose language is restricted in its modal part to necessity modalities, and prove that satisfiability problem in this fragment is .-complete over reflexive or an irreflexive and dense underlying structure of time.
15#
發(fā)表于 2025-3-24 06:07:58 | 只看該作者
16#
發(fā)表于 2025-3-24 10:23:32 | 只看該作者
17#
發(fā)表于 2025-3-24 11:57:31 | 只看該作者
Neighbourhood Contingency Bisimulation,We introduce a notion of bisimulation for contingency logic interpreted on neighbourhood structures, characterise this logic as bisimulation-invariant fragment of modal logic and of first-order logic, and compare it with existing notions in the literature.
18#
發(fā)表于 2025-3-24 17:01:49 | 只看該作者
19#
發(fā)表于 2025-3-24 20:21:45 | 只看該作者
Definability of Recursive Predicates in the Induced Subgraph Order,Consider the set of all finite simple graphs . ordered by the induced subgraph order .. Building on previous work by Wires [.] and Jezek and Mckenzie [.,.,.,.], we show that every recursive predicate over graphs is definable in the first order theory of (.) where . is the path on 3 vertices.
20#
發(fā)表于 2025-3-25 00:21:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固原市| 左权县| 阿鲁科尔沁旗| 邹平县| 新安县| 普安县| 张家口市| 宁晋县| 磐安县| 连平县| 定州市| 钟山县| 镇平县| 洮南市| 宾阳县| 乐安县| 芷江| 沅陵县| 赤峰市| 来凤县| 白山市| 衡南县| 体育| 高台县| 安吉县| 锦屏县| 文登市| 府谷县| 萝北县| 新田县| 阳朔县| 汨罗市| 桐柏县| 泰宁县| 平邑县| 东平县| 安溪县| 调兵山市| 郑州市| 宾川县| 塘沽区|