找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic and Its Applications; 10th Indian Conferen Mohua Banerjee,A. V. Sreejith Conference proceedings 2023 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: 烤問
11#
發(fā)表于 2025-3-23 10:17:00 | 只看該作者
12#
發(fā)表于 2025-3-23 16:32:16 | 只看該作者
13#
發(fā)表于 2025-3-23 21:25:46 | 只看該作者
14#
發(fā)表于 2025-3-24 00:19:39 | 只看該作者
978-3-031-26688-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
15#
發(fā)表于 2025-3-24 06:06:01 | 只看該作者
Logic and Its Applications978-3-031-26689-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
16#
發(fā)表于 2025-3-24 09:36:49 | 只看該作者
,Relational Semantics for?Normal Topological Quasi-Boolean Logic,This work introduces modal logics for varieties of normal topological quasi-Boolean algebras. Relational semantics for these modal logics using involutive frames are established. A discrete duality is given for involutive frames and normal topological quasi-Boolean algebras. Some results on Kripke-completeness and finite model property are given.
17#
發(fā)表于 2025-3-24 13:02:28 | 只看該作者
,Modal Logic of?Generalized Separated Topological Spaces,nterpret . as the derived set operator in a topological space, the class of all .-spaces is .-defined by the modal formula ., and we show that . is the .-logic of all .-spaces. For ., the class of all .-spaces is not .-definable.
18#
發(fā)表于 2025-3-24 18:37:29 | 只看該作者
19#
發(fā)表于 2025-3-24 22:45:40 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:23 | 只看該作者
,Labelled Calculi for?the?Logics of?Rough Concepts,re the labels are atomic formulas of the first order language of ., i.e., relational structures based on formal contexts which provide complete semantics for these logics. We also extend these calculi to provide a proof system for the logic of ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
饶河县| 吴旗县| 志丹县| 瑞安市| 东乡族自治县| 长治市| 南投县| 商南县| 南郑县| 锡林浩特市| 隆尧县| 甘谷县| 新绛县| 连平县| 堆龙德庆县| 成安县| 武冈市| 永康市| 舟曲县| 嘉祥县| 尚义县| 成武县| 达尔| 奉化市| 东乡县| 澄江县| 饶阳县| 金乡县| 武胜县| 汶上县| 宝山区| 余干县| 嘉禾县| 桃园县| 凌海市| 阿鲁科尔沁旗| 绥棱县| 安丘市| 金门县| 十堰市| 长泰县|