找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic and Its Applications; Fourth Indian Confer Mohua Banerjee,Anil Seth Conference proceedings 2011 Springer Berlin Heidelberg 2011 Frege

[復(fù)制鏈接]
樓主: 皺紋
21#
發(fā)表于 2025-3-25 04:18:54 | 只看該作者
Becoming Aware of Propositional Variables,We examine a logic that combines knowledge, awareness, and change of awareness. Change of awareness involves that an agent becomes aware of propositional variables. We show that the logic is decidable, and we present a complete axiomatization.
22#
發(fā)表于 2025-3-25 08:00:47 | 只看該作者
Mohua Banerjee,Anil SethState-of-the-art research.Fast-track conference proceedings.Unique visibility
23#
發(fā)表于 2025-3-25 13:27:22 | 只看該作者
24#
發(fā)表于 2025-3-25 18:36:11 | 只看該作者
25#
發(fā)表于 2025-3-25 22:30:12 | 只看該作者
A Stochastic Interpretation of Propositional Dynamic Logic: Expressivity,neral measurable spaces. Bisimilarity is also discussed and shown to be equivalent to logical and behavioral equivalence, provided the base spaces are Polish spaces. We adapt techniques from coalgebraic stochastic logic and point out some connections to Souslin’s operation . from descriptive set theory.
26#
發(fā)表于 2025-3-26 00:28:56 | 只看該作者
A Qualitative Approach to Uncertainty,express different levels of uncertainties explicitly in the logical language. After introducing a . modal framework, we discuss the different possibilities of an agent’s attitude towards a proposition that can be expressed in this framework, and provide a preliminary look at the dynamics of the situation.
27#
發(fā)表于 2025-3-26 05:54:18 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:55 | 只看該作者
,A Note on Nathanial’s Invariance Principle in Polyadic Inductive Logic,bit a family of basic probability functions satisfying this principle. We conjecture that every probability function satisfying this principle can be approximated arbitrarily closely by a convex combination of these basic solutions.
29#
發(fā)表于 2025-3-26 13:17:17 | 只看該作者
Ultrafilter Extensions of Models,orphisms: any homomorphism of?. into . extends to a?continuous homomorphism of . into?.. Moreover, if a?model?. carries a?compact Hausdorff topology which is (in a?certain sense) compatible, then any homomorphism of . into?. extends to a?continuous homomorphism of . into?.. This is also true for embeddings instead of homomorphisms.
30#
發(fā)表于 2025-3-26 20:27:44 | 只看該作者
Logic in the Community,s, knowledge and preferences. Knowledge, belief, preferences and even the social relationships are constantly changing, and yet our ability to keep track of these changes is an important part of what it means to belong to a community.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翁源县| 南澳县| 东阳市| 监利县| 兰西县| 通辽市| 得荣县| 永康市| 云南省| 阿拉善盟| 靖远县| 海门市| 通许县| 兖州市| 西乌珠穆沁旗| 全州县| 岳阳市| 安陆市| 安化县| 涿州市| 哈尔滨市| 榆中县| 新郑市| 禄丰县| 静乐县| 都昌县| 博爱县| 昭平县| 兰坪| 东丰县| 霍邱县| 贡觉县| 米泉市| 南部县| 吕梁市| 宁陵县| 洞头县| 共和县| 金阳县| 涿州市| 新龙县|