找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic and Its Applications; Fourth Indian Confer Mohua Banerjee,Anil Seth Conference proceedings 2011 Springer Berlin Heidelberg 2011 Frege

[復(fù)制鏈接]
樓主: 皺紋
21#
發(fā)表于 2025-3-25 04:18:54 | 只看該作者
Becoming Aware of Propositional Variables,We examine a logic that combines knowledge, awareness, and change of awareness. Change of awareness involves that an agent becomes aware of propositional variables. We show that the logic is decidable, and we present a complete axiomatization.
22#
發(fā)表于 2025-3-25 08:00:47 | 只看該作者
Mohua Banerjee,Anil SethState-of-the-art research.Fast-track conference proceedings.Unique visibility
23#
發(fā)表于 2025-3-25 13:27:22 | 只看該作者
24#
發(fā)表于 2025-3-25 18:36:11 | 只看該作者
25#
發(fā)表于 2025-3-25 22:30:12 | 只看該作者
A Stochastic Interpretation of Propositional Dynamic Logic: Expressivity,neral measurable spaces. Bisimilarity is also discussed and shown to be equivalent to logical and behavioral equivalence, provided the base spaces are Polish spaces. We adapt techniques from coalgebraic stochastic logic and point out some connections to Souslin’s operation . from descriptive set theory.
26#
發(fā)表于 2025-3-26 00:28:56 | 只看該作者
A Qualitative Approach to Uncertainty,express different levels of uncertainties explicitly in the logical language. After introducing a . modal framework, we discuss the different possibilities of an agent’s attitude towards a proposition that can be expressed in this framework, and provide a preliminary look at the dynamics of the situation.
27#
發(fā)表于 2025-3-26 05:54:18 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:55 | 只看該作者
,A Note on Nathanial’s Invariance Principle in Polyadic Inductive Logic,bit a family of basic probability functions satisfying this principle. We conjecture that every probability function satisfying this principle can be approximated arbitrarily closely by a convex combination of these basic solutions.
29#
發(fā)表于 2025-3-26 13:17:17 | 只看該作者
Ultrafilter Extensions of Models,orphisms: any homomorphism of?. into . extends to a?continuous homomorphism of . into?.. Moreover, if a?model?. carries a?compact Hausdorff topology which is (in a?certain sense) compatible, then any homomorphism of . into?. extends to a?continuous homomorphism of . into?.. This is also true for embeddings instead of homomorphisms.
30#
發(fā)表于 2025-3-26 20:27:44 | 只看該作者
Logic in the Community,s, knowledge and preferences. Knowledge, belief, preferences and even the social relationships are constantly changing, and yet our ability to keep track of these changes is an important part of what it means to belong to a community.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双流县| 凤翔县| 新乡县| 曲靖市| 永胜县| 会泽县| 东乌| 桃江县| 涞源县| 余干县| 加查县| 象山县| 西青区| 思南县| 农安县| 庄浪县| 兰溪市| 连平县| 桃园县| 来安县| 工布江达县| 孝感市| 涿州市| 景德镇市| 合水县| 鄂托克前旗| 桓仁| 泸水县| 大埔区| 淳安县| 乐安县| 六枝特区| 永州市| 太保市| 徐州市| 上饶市| 鹿邑县| 厦门市| 栖霞市| 兴隆县| 塘沽区|