找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logarithms and Antilogarithms; An Algebraic Analysi Danuta Przeworska-Rolewicz Book 1998 Springer Science+Business Media Dordrecht 1998 alg

[復(fù)制鏈接]
樓主: Novice
21#
發(fā)表于 2025-3-25 04:02:09 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/l/image/587853.jpg
22#
發(fā)表于 2025-3-25 10:50:20 | 只看該作者
Equations with Multiplicative Involutions of Order ,multiplicative involutions of order . ≥ 2. However, neither in this book nor elsewhere equations with multiplicative involutions of order . ≥ 2 have been studied to the full. So that, we shall present here some results never published before and we shall apply them to equations with logarithms and antilogarithms.
23#
發(fā)表于 2025-3-25 12:32:46 | 只看該作者
24#
發(fā)表于 2025-3-25 16:51:46 | 只看該作者
Overview: 978-94-010-6194-0978-94-011-5212-9
25#
發(fā)表于 2025-3-25 20:46:02 | 只看該作者
26#
發(fā)表于 2025-3-26 01:18:33 | 只看該作者
Logarithms and Antilogarithms of Operators Having Either Finite Nullity or Finite Deficiency,Let . ∈ .(.). Recall that the . and the . of . areα. = dim ker ., β. = codim .(dom .) = .respectively.respectively. The index κA of an operator A ∈ L(.) having either finite nullity or finite deficiency is defined as follows:
27#
發(fā)表于 2025-3-26 06:30:57 | 只看該作者
Reduction Theorems,We shall consider now a class of commutative .-algebras which are important in some applications and have non-Leibniz components of a particular form. Non-commutative algebras can be treated in a similar manner, but for them all results are much more complicated in the formulation (cf. Example 5.8).
28#
發(fā)表于 2025-3-26 11:03:55 | 只看該作者
29#
發(fā)表于 2025-3-26 15:36:03 | 只看該作者
Linear Equations in Leibniz Algebras,The main purpose of the present chapter is to find solutions of linear equations with an operator . by means of already known properties of right and left logarithms and antilogarithms.
30#
發(fā)表于 2025-3-26 17:07:15 | 只看該作者
Trigonometric Mappings and Elements,In this chapter we shall consider particular properties of left and right logarithmic and antilogarithmic mappings in algebras over ?.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高安市| 大渡口区| 富阳市| 乃东县| 仲巴县| 康保县| 宝坻区| 柳州市| 乌鲁木齐县| 司法| 清流县| 孟连| 长沙县| 嘉善县| 惠州市| 桑植县| 远安县| 台湾省| 托里县| 西峡县| 翁牛特旗| 五台县| 蒙自县| 黄陵县| 肇州县| 安多县| 五寨县| 云和县| 息烽县| 文安县| 浦城县| 淳化县| 丰宁| 杭锦旗| 聊城市| 蓬安县| 观塘区| 秦皇岛市| 望城县| 磐安县| 延津县|