找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems; Mariana Haragus,Gérard Iooss Textbook 20

[復(fù)制鏈接]
查看: 29540|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:27:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems
編輯Mariana Haragus,Gérard Iooss
視頻videohttp://file.papertrans.cn/588/587596/587596.mp4
概述Step-by-step examples and exercises are provided throughout, illustrating the variety of possible applications.Written by recognised experts in the field of center manifold and normal form theory.Prov
叢書名稱Universitext
圖書封面Titlebook: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems;  Mariana Haragus,Gérard Iooss Textbook 20
描述.An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics...Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades...Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate
出版日期Textbook 2011
關(guān)鍵詞bifurcations; center manifold reduction; infinite dimensional dynamical systems; normal forms; travellin
版次1
doihttps://doi.org/10.1007/978-0-85729-112-7
isbn_softcover978-0-85729-111-0
isbn_ebook978-0-85729-112-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightEDP Sciences 2011
The information of publication is updating

書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems影響因子(影響力)




書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems影響因子(影響力)學(xué)科排名




書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems網(wǎng)絡(luò)公開度




書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems被引頻次




書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems被引頻次學(xué)科排名




書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems年度引用




書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems年度引用學(xué)科排名




書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems讀者反饋




書目名稱Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:19:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:50:36 | 只看該作者
地板
發(fā)表于 2025-3-22 06:35:37 | 只看該作者
5#
發(fā)表于 2025-3-22 09:52:37 | 只看該作者
Textbook 2011tems provides the reader with a comprehensive overview of these topics...Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the r
6#
發(fā)表于 2025-3-22 15:16:05 | 只看該作者
0172-5939 in the field of center manifold and normal form theory.Prov.An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics...Starting with the
7#
發(fā)表于 2025-3-22 17:11:54 | 只看該作者
Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems
8#
發(fā)表于 2025-3-23 00:47:24 | 只看該作者
9#
發(fā)表于 2025-3-23 03:48:13 | 只看該作者
Mariana Haragus,Gérard Iooss Genetische Algorithmen dazu eingesetzt werden, fehlende Kraftfeldparameter auf der Basis einer vorgegebenen Menge experimenteller Strukturdaten von Grund auf in einem automatisierten Proze? neu zu entwickeln. Die dabei erhaltenen Parameter zur Modellierung einer bestimmten Klasse von .Metall-Komple
10#
發(fā)表于 2025-3-23 09:00:05 | 只看該作者
Mariana Haragus,Gérard Iooss Genetische Algorithmen dazu eingesetzt werden, fehlende Kraftfeldparameter auf der Basis einer vorgegebenen Menge experimenteller Strukturdaten von Grund auf in einem automatisierten Proze? neu zu entwickeln. Die dabei erhaltenen Parameter zur Modellierung einer bestimmten Klasse von .Metall-Komple
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富锦市| 耿马| 怀远县| 青神县| 永德县| 海林市| 荥经县| 通河县| 灵武市| 尼勒克县| 祥云县| 邓州市| 遂溪县| 城市| 江油市| 蛟河市| 凯里市| 甘泉县| 石楼县| 天柱县| 三原县| 东乡| 甘谷县| 朔州市| 威海市| 珠海市| 中西区| 集贤县| 方城县| 兴国县| 靖边县| 石渠县| 正安县| 峨边| 山阴县| 玉龙| 思茅市| 弋阳县| 钟祥市| 绥滨县| 安新县|