找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linguistic Resources for Natural Language Processing; On the Necessity of Max Silberztein Book 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 25761|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:56:15 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Linguistic Resources for Natural Language Processing
副標題On the Necessity of
編輯Max Silberztein
視頻videohttp://file.papertrans.cn/587/586699/586699.mp4
概述Addresses the topic of multiword units in NLP software and the issue low-resource languages.Discusses training corpus-based approaches and explains the intrinsic value of linguistic formalization.Show
圖書封面Titlebook: Linguistic Resources for Natural Language Processing; On the Necessity of  Max Silberztein Book 2024 The Editor(s) (if applicable) and The
描述.Empirical — data-driven, neural network-based, probabilistic, and statistical — methods seem to be the modern trend. Recently, OpenAI’s ChatGPT, Google’s Bard and Microsoft’s Sydney chatbots have been garnering a lot of attention for their detailed answers across many knowledge domains. In consequence, most AI researchers are no longer interested in trying to understand what common intelligence is or how intelligent agents construct scenarios to solve various problems. Instead, they now develop systems that extract solutions from massive databases used as cheat sheets. In the same manner, Natural Language Processing (NLP) software that uses training corpora associated with empirical methods are trendy, as most researchers in NLP today use large training corpora, always to the detriment of the development of formalized dictionaries and grammars..Not questioning the intrinsic value of many software applications based on empirical methods, this volume aims at rehabilitating the linguistic approach to NLP. In an introduction, the editor uncovers several limitations and flaws of using training corpora to develop NLP applications, even the simplest ones, such as automatic taggers..The f
出版日期Book 2024
關(guān)鍵詞Named Entity Recognition; Natural Language Processing; Text Generation; Training Corpora; Statistical Me
版次1
doihttps://doi.org/10.1007/978-3-031-43811-0
isbn_softcover978-3-031-43813-4
isbn_ebook978-3-031-43811-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Linguistic Resources for Natural Language Processing影響因子(影響力)




書目名稱Linguistic Resources for Natural Language Processing影響因子(影響力)學(xué)科排名




書目名稱Linguistic Resources for Natural Language Processing網(wǎng)絡(luò)公開度




書目名稱Linguistic Resources for Natural Language Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Linguistic Resources for Natural Language Processing被引頻次




書目名稱Linguistic Resources for Natural Language Processing被引頻次學(xué)科排名




書目名稱Linguistic Resources for Natural Language Processing年度引用




書目名稱Linguistic Resources for Natural Language Processing年度引用學(xué)科排名




書目名稱Linguistic Resources for Natural Language Processing讀者反饋




書目名稱Linguistic Resources for Natural Language Processing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:13:09 | 只看該作者
Formalization of the Quechua Morphologyventory of all Quechua suffixes, I classified them into specific sets corresponding to their POS category. Next, I formalized their grammatical behavior separately, using elementary matrices. The resulting tables describe valid combinations of two, three, and four suffixes. Finally, I formalized the inflection and derivation of each POS category.
板凳
發(fā)表于 2025-3-22 00:38:59 | 只看該作者
地板
發(fā)表于 2025-3-22 07:38:54 | 只看該作者
The Limitations of Corpus-Based Methods in NLPs. Next, I examine the principles which are at the basis of corpus-based methods and uncover their linguistic naiveté. I finally dispute the scientific validity of empirical approaches. I propose solutions to various problems that are based on the use of carefully handcrafted linguistic methods and resources.
5#
發(fā)表于 2025-3-22 10:51:02 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:19 | 只看該作者
A Polylectal Linguistic Resource for Rromanirammar that describes agglutination. It can be used both for Rromani language studies and for developing Natural Language Processing (NLP) applications. We show that the same architecture can describe other low-resource languages.
7#
發(fā)表于 2025-3-22 17:54:21 | 只看該作者
8#
發(fā)表于 2025-3-22 23:59:19 | 只看該作者
Linguistic Resources and Methods for Belarusian Natural Language Processing for computational processing of textual information and speech. The proposed resources are also used to collect targeted thematic content to develop and refine natural language processing systems for Belarusian. As a consequence, we show that linguistic resources have not lost their relevance to NLP.
9#
發(fā)表于 2025-3-23 02:12:45 | 只看該作者
A New Set of Linguistic Resources for Ukrainiancial sciences to analyze their own corpora of Ukrainian texts. We will first review the various existing NLP software applications that can process Ukrainian texts, their functionalities, and their performance. We then describe the linguistic resources we have developed, and finally compare the results produced by both approaches.
10#
發(fā)表于 2025-3-23 09:05:27 | 只看該作者
The Challenging Task of Translating the Language of Tangoof translating a Tango song lyrics to English. We look at the translations produced by Google Translator and DeepL and we compare them with translations produced by accessing handcrafted linguistic resources specifically developed for Rioplatense Spanish.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沭县| 麻城市| 景洪市| 临城县| 乌拉特前旗| 淮安市| 华亭县| 定安县| 永吉县| 双江| 潢川县| 来凤县| 台山市| 唐河县| 南康市| 同德县| 板桥市| 德阳市| 紫金县| 宁都县| 奈曼旗| 寿光市| 林西县| 获嘉县| 崇州市| 赫章县| 大竹县| 龙口市| 岳普湖县| 乐安县| 通江县| 保山市| 延边| 突泉县| 淮北市| 岳西县| 延吉市| 石门县| 岐山县| 易门县| 增城市|