找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lineare Regression und Verwandtes; Beispiele mit L?sung Hans Riedwyl Book 1997 Springer Basel AG 1997 H?ufigkeit.Ma?.Methode der kleinsten

[復(fù)制鏈接]
樓主: 專家
11#
發(fā)表于 2025-3-23 12:26:59 | 只看該作者
Hans Riedwyl Chevalley in the 1950s showed that semisimple groups can be defined over arbitrary fields (including finite ones) and even over integers. Although semisimple Lie algebras cannot be deformed in a non-trivial way, the work of Drinfeld and Jimbo showed that their enveloping (Hopf) algebras admit a rat
12#
發(fā)表于 2025-3-23 14:42:23 | 只看該作者
Hans Riedwyl Chevalley in the 1950s showed that semisimple groups can be defined over arbitrary fields (including finite ones) and even over integers. Although semisimple Lie algebras cannot be deformed in a non-trivial way, the work of Drinfeld and Jimbo showed that their enveloping (Hopf) algebras admit a rat
13#
發(fā)表于 2025-3-23 21:02:55 | 只看該作者
Hans Riedwyl Chevalley in the 1950s showed that semisimple groups can be defined over arbitrary fields (including finite ones) and even over integers. Although semisimple Lie algebras cannot be deformed in a non-trivial way, the work of Drinfeld and Jimbo showed that their enveloping (Hopf) algebras admit a rat
14#
發(fā)表于 2025-3-23 22:14:01 | 只看該作者
Hans Riedwyl Chevalley in the 1950s showed that semisimple groups can be defined over arbitrary fields (including finite ones) and even over integers. Although semisimple Lie algebras cannot be deformed in a non-trivial way, the work of Drinfeld and Jimbo showed that their enveloping (Hopf) algebras admit a rat
15#
發(fā)表于 2025-3-24 03:20:42 | 只看該作者
16#
發(fā)表于 2025-3-24 08:11:17 | 只看該作者
17#
發(fā)表于 2025-3-24 11:09:17 | 只看該作者
Gezogene Zahlen der Vorwochen plus/minus eins im Schweizer Zahlenlotto
18#
發(fā)表于 2025-3-24 16:08:05 | 只看該作者
übernommene Gewinntips der Vorwochen im Schweizer Zahlenlotto
19#
發(fā)表于 2025-3-24 20:29:08 | 只看該作者
20#
發(fā)表于 2025-3-25 01:30:08 | 只看該作者
Hans Riedwyls, Haar measure, Peter–Weyl theory, Tannakian duality and basic Brauer theorems. The core of the book, its second and third parts, focus on the main examples, first in the continuous case, and then in the discr978-3-031-23819-2978-3-031-23817-8
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨竹工卡县| 陇南市| 通化市| 岳西县| 黔东| 郓城县| 阆中市| 丹棱县| 嘉祥县| 通化市| 长泰县| 浙江省| 镇安县| 高安市| 且末县| 湟源县| 区。| 安仁县| 健康| 肥乡县| 永川市| 蒙城县| 牟定县| 赤城县| 全南县| 武功县| 杨浦区| 乐业县| 什邡市| 确山县| 澄迈县| 织金县| 伊春市| 斗六市| 刚察县| 六安市| 湘西| 子洲县| 壶关县| 九江市| 秭归县|