找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lineare Algebra; Ein Lehrbuch über di J?rg Liesen,Volker Mehrmann Textbook 20152nd edition Springer Fachmedien Wiesbaden 2015 Algebraische

[復(fù)制鏈接]
樓主: angiotensin-I
51#
發(fā)表于 2025-3-30 08:23:11 | 只看該作者
Lineare Gleichungssysteme,nearisierung einer nichtlinearen Gleichung. Die L?sung solcher Systeme ist daher ein zentrales Problem der Linearen Algebra, das wir in diesem Kapitel einführend behandeln wollen. Wir analysieren die L?sungsmengen von linearen Gleichungssystemen, charakterisieren mit Hilfe der im vorherigen Kapitel
52#
發(fā)表于 2025-3-30 12:57:08 | 只看該作者
53#
發(fā)表于 2025-3-30 19:07:20 | 只看該作者
54#
發(fā)表于 2025-3-30 21:33:19 | 只看該作者
Lineare Abbildungen,onen Addition und skalare Multiplikation ?vertr?glich“ sind. Hierbei handelt es sich um die linearen Abbildungen. Nach der Untersuchung ihrer wichtigsten Eigenschaften zeigen wir, dass im Fall von endlichdimensionalen Vektorr?umen jede lineare Abbildung durch eine Matrix dargestellt werden kann, sob
55#
發(fā)表于 2025-3-31 02:01:21 | 只看該作者
Linearformen und Bilinearformen,bst als einen eindimensionalen K-Vektorraum auffassen. Diese Abbildungen spielen unter anderem eine wichtige Rolle in der Analysis, der Funktionalanalysis und bei der L?sung von Differenzialgleichungen. Für uns bilden sie die Grundlage für weitere wichtige Entwicklungen. Ausgehend von den Bilinear-
56#
發(fā)表于 2025-3-31 07:22:10 | 只看該作者
57#
發(fā)表于 2025-3-31 13:13:03 | 只看該作者
58#
發(fā)表于 2025-3-31 16:40:57 | 只看該作者
Polynome und der Fundamentalsatz der Algebra,cht jedes Polynom über jedem K?rper in Linearfaktoren zerf?llt, stellt sich stellt sich die Frage, wann eine Matrix oder ein Endomorphismus Eigenwerte besitzt. Um diese Frage zu beantworten, besch?ftigen wir uns in diesem Kapitel im Detail mit Polynomen.
59#
發(fā)表于 2025-3-31 20:26:08 | 只看該作者
Matrix-Funktionen und Differenzialgleichungssysteme,n der Stochastik, der Kontrolltheorie, der Optimierung und vielen weiteren Gebieten der Mathematik und ihren Anwendungen auf. Nach der Definition von prim?ren Matrix-Funktionen und der Herleitung ihrer wichtigsten Eigenschaften betrachten wir die Matrix-Exponentialfunktion. Mit Hilfe dieser Funktion
60#
發(fā)表于 2025-3-31 23:04:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎右旗| 阆中市| 北川| 上蔡县| 施甸县| 青浦区| 盘锦市| 文安县| 毕节市| 庆元县| 三台县| 阿拉善左旗| 稻城县| 慈溪市| 贞丰县| 竹北市| 抚顺县| 永寿县| 遵化市| 宝山区| 扶绥县| 岳普湖县| 临沭县| 疏勒县| 长春市| 湖北省| 奉节县| 棋牌| 方山县| 曲沃县| 隆回县| 象州县| 宾川县| 大田县| 浙江省| 宝丰县| 惠东县| 梁平县| 乌兰浩特市| 南昌县| 茶陵县|