找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Representations of Finite Groups; Jean-Pierre Serre Textbook 1977 Springer Science+Business Media New York 1977 Darstellung (Math.

[復制鏈接]
樓主: TOUT
11#
發(fā)表于 2025-3-23 12:08:43 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:42 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:23 | 只看該作者
Generalities on linear representations linear mapping of V into V which has an inverse a.; this inverse is linear. When V has a finite basis (.) of n elements, each linear map .: V → V is defined by a square matrix (.) of order .. The coefficients . are complex numbers; they are obtained by expressing the images .(.) in terms of the basis (.):
15#
發(fā)表于 2025-3-24 04:02:52 | 只看該作者
Artin’s theoremombination of the .’s with non-negative integer coefficients. We will denote by R. (G) the set of these functions, and by R(G) the group generated by R.(G), i.e., the set of differences of two characters. We have
16#
發(fā)表于 2025-3-24 07:28:04 | 只看該作者
Rationality questions: examplesbers, and let .(.) be the field obtained by adjoining the .th roots of unity to .. The Galois group of .(.) over . is the group denoted Γ. in 12.4; it is a subgroup of the group (./.)*. In fact:. (Gauss). . Γ. = (./m.)*.
17#
發(fā)表于 2025-3-24 12:33:14 | 只看該作者
https://doi.org/10.1007/978-1-4684-9458-7Darstellung (Math; ); Endliche Gruppe; Finite; algebra; character theory; mathematics; proof; theorem
18#
發(fā)表于 2025-3-24 15:25:54 | 只看該作者
19#
發(fā)表于 2025-3-24 22:01:23 | 只看該作者
20#
發(fā)表于 2025-3-25 02:30:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
泰来县| 志丹县| 惠东县| 平顶山市| 同德县| 乌恰县| 通河县| 左云县| 阜新市| 永吉县| 库伦旗| 永仁县| 诏安县| 太白县| 乐昌市| 六安市| 台中市| 南雄市| 左贡县| 潜山县| 仁化县| 洛南县| 会昌县| 广宁县| 专栏| 牡丹江市| 比如县| 天镇县| 泗阳县| 行唐县| 柳林县| 田东县| 时尚| 康马县| 科技| 措美县| 高淳县| 碌曲县| 沧源| 公主岭市| 鹤壁市|