找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Operators in Hilbert Spaces; Joachim Weidmann Textbook 1980 Springer-Verlag New York Inc. 1980 Hilbert space.Hilbertscher Raum.Koor

[復(fù)制鏈接]
樓主: Aggrief
21#
發(fā)表于 2025-3-25 07:03:53 | 只看該作者
Hilbert spaces,. ∈ . with ∥.. ? .∥→0; since from ∥ .. ? .∥→0 and ∥ .. ? g∥→0 it follows that ∥. - g∥ ? ∥ . ? ..∥ + ∥ .. ? g∥→0, thus . = .. We say that the sequence (..) . to . and call . the . of the sequence (..). In symbols we write . = lim.. or ..→. as .→∞. If no confusion is possible, we shall occasionally ab
22#
發(fā)表于 2025-3-25 09:12:24 | 只看該作者
Orthogonality, + .∥. = ∥ . ∥. + ∥ . ∥.; this formula often is referred to as the .. An element . ∈ . is said to be . to the subset . of . (in symbols . ⊥ .), if .⊥. for all .∈.. Two subsets . and . of . are said to be orthogonal (in symbols .⊥ .) if <., .> = 0 for all . ∈ ., . ∈ .. If . is a subset of ., then the
23#
發(fā)表于 2025-3-25 13:12:59 | 只看該作者
24#
發(fā)表于 2025-3-25 19:36:16 | 只看該作者
25#
發(fā)表于 2025-3-25 21:06:16 | 只看該作者
Self-adjoint extensions of symmetric operators,int extensions. The question of whether all (or which) symmetric operators have self-adjoint extensions could not be answered there. The key to our studies was the fact that λ — . was continuously invertible for some λ ∈ ?; however, this is not always the case. In this chapter we develop the ., whic
26#
發(fā)表于 2025-3-26 01:14:54 | 只看該作者
27#
發(fā)表于 2025-3-26 06:26:30 | 只看該作者
28#
發(fā)表于 2025-3-26 10:14:17 | 只看該作者
Special classes of linear operators,Let .. and .. be Hilbert spaces. An operator T from .. into .. is said to be of . (of .) if R(.) is finite-dimensional (.-dimensional).
29#
發(fā)表于 2025-3-26 15:57:17 | 只看該作者
The spectral theory of self-adjoint and normal operators,We studied the spectrum of compact operators thoroughly in Section 6.1. For compact normal operators the results obtained there may be sharpened.
30#
發(fā)表于 2025-3-26 18:38:53 | 只看該作者
Perturbation theory for self-adjoint operators,Here we will deal almost exclusively with the perturbation theory for self-adjoint and essentially self-adjoint operators. Essentially two questions arise:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善左旗| 威远县| 宜兴市| 崇仁县| 平顶山市| 芦山县| 合江县| 凤山市| 仪陇县| 高阳县| 都江堰市| 仁布县| 贺州市| 临城县| 中宁县| 上杭县| 额敏县| 大邑县| 鞍山市| 平遥县| 水富县| 东乌珠穆沁旗| 克东县| 腾冲县| 巴林右旗| 灵寿县| 北安市| 宜兴市| 陆丰市| 沙湾县| 杂多县| 嘉善县| 大竹县| 体育| 德兴市| 开阳县| 札达县| 洱源县| 合作市| 苏尼特右旗| 揭西县|