找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Operators in Function Spaces; 12th International C H. Helson,B. Sz.-Nagy,Gr. Arsene Book 1990 Birkh?user Verlag Basel 1990 C*-algebr

[復制鏈接]
樓主: amateur
21#
發(fā)表于 2025-3-25 04:50:54 | 只看該作者
22#
發(fā)表于 2025-3-25 10:04:04 | 只看該作者
23#
發(fā)表于 2025-3-25 11:41:36 | 只看該作者
A Note on Perturbations of Selfadjoint Operators in Krein Spaces,ifference of the resolvents of A and B belong to some Schatten-von Neumann ideal S., 1 ≤p < ∞, of compact operators in . ([3]). If, in addition, A is fundamentally reducible ([1]), then B possesses a spectral function with singularities and the set S of the spectral singularities of B has no more th
24#
發(fā)表于 2025-3-25 18:55:42 | 只看該作者
Projective Representations of Compact Groups in C*-Algebras,old, and studied some of its geometrical properties. This space, called the Grassmann manifold of A, has a simple alternative description. There is a bijective correspondence from . to the set of all unitary representations of the cyclic group ./2 in A. More precisely, each hermitian idempotent e in
25#
發(fā)表于 2025-3-25 23:59:45 | 只看該作者
Wiener-Hopf Operators on the Positive Semigroup of a Heisenberg Group,mpression in the general context of a locally compact group, with [0, ∞) replaced by a semigroup which is the closure of its interior. The most often considered examples of generalized Wiener-Hopf operators obtained in this manner are the Euclidean ones, where the group is R. and the compression is
26#
發(fā)表于 2025-3-26 00:12:05 | 只看該作者
27#
發(fā)表于 2025-3-26 07:12:57 | 只看該作者
28#
發(fā)表于 2025-3-26 11:24:08 | 只看該作者
29#
發(fā)表于 2025-3-26 15:22:50 | 只看該作者
D. Z. Arovent from a business point of view, using Microsoft bot technology, and demonstrates how to connect, deploy, and manage them..Starting with an introduction to chatbots and their features you will go through the design and implementation of Azure chatbots. This will set the foundation for the rest of
30#
發(fā)表于 2025-3-26 18:33:07 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 06:31
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐清市| 安平县| 富源县| 西宁市| 嘉禾县| 云林县| 柘城县| 扶绥县| 阿尔山市| 体育| 米易县| 威海市| 开原市| 晋宁县| 阳谷县| 乾安县| 禄劝| 高平市| 阿坝县| 溧阳市| 晋宁县| 松桃| 阜阳市| 专栏| 休宁县| 泾源县| 东至县| 边坝县| 海门市| 武汉市| 赤水市| 武强县| 育儿| 富蕴县| 克什克腾旗| 江北区| 五莲县| 资源县| 湟源县| 腾冲县| 庐江县|