找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Integral Equations; Rainer Kress Textbook 19891st edition Springer-Verlag Berlin Heidelberg 1989 Hilbert space.Integral calculus.In

[復(fù)制鏈接]
樓主: 類屬
51#
發(fā)表于 2025-3-30 08:33:16 | 只看該作者
52#
發(fā)表于 2025-3-30 14:53:20 | 只看該作者
Iterative Solution and Stability,lving linear systems obtained by discretizing operator equations based on the principal idea of the residual correction. In addition, at the end of this chapter we will briefly enter into the question of stability of the linear systems arising in the discretization of integral equations.
53#
發(fā)表于 2025-3-30 16:53:07 | 只看該作者
0066-5452 l beauty. This book will try to stimulate the reader to share this love with me. Having taught integral equations a number of times I felt a lack of a text which adequately combines theory, applications and numerical methods. Therefore, in this book I intend to cover each of these fields with the sa
54#
發(fā)表于 2025-3-30 23:56:21 | 只看該作者
55#
發(fā)表于 2025-3-31 03:25:11 | 只看該作者
Singular Integral Equations,tegral equations they will provide an application of the general idea of regularizing singular operators as described in Chapter 5. We assume that the reader is acquainted with the basic theory of complex functions.
56#
發(fā)表于 2025-3-31 05:49:24 | 只看該作者
The Heat Equation,ifferential equation. In this chapter we want to indicate the application of Volterra type integral equations for the solution of initial boundary value problems for the heat equation. Without loss of generality we assume the constant κ = 1.
57#
發(fā)表于 2025-3-31 11:35:18 | 只看該作者
58#
發(fā)表于 2025-3-31 14:53:25 | 只看該作者
Springer-Verlag Berlin Heidelberg 1989
59#
發(fā)表于 2025-3-31 18:18:32 | 只看該作者
60#
發(fā)表于 2025-3-31 23:56:11 | 只看該作者
Regularization in Dual Systems,strate that it is still possible to obtain results on the solvability of singular equations provided they can be regularized, that is, they can be transformed into equations of the second kind with a compact operator.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌云县| 靖边县| 新昌县| 汝南县| 呈贡县| 贺州市| 鸡泽县| 灵山县| 铅山县| 越西县| 汝阳县| 彭阳县| 凌云县| 海口市| 鄂伦春自治旗| 怀化市| 辛集市| 石阡县| 剑河县| 湖州市| 治县。| 伊春市| 葵青区| 德令哈市| 象州县| 湾仔区| 嘉祥县| 涟源市| 马尔康县| 铁力市| 当阳市| 岫岩| 滦南县| 章丘市| 丰城市| 赤壁市| 灵山县| 岳普湖县| 甘谷县| 北川| 确山县|