找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Integral Equations; Ram P. Kanwal Textbook 1997Latest edition Springer Science+Business Media New York 1997 equations.ksa.mathemati

[復(fù)制鏈接]
樓主: 挑染
11#
發(fā)表于 2025-3-23 12:30:09 | 只看該作者
Applications to Partial Differential Equations,ations arise in finding the solutions of boundary value problems in the theory of partial differential equations of the second order. The boundary value problems for equations of elliptic type can be reduced to Fredholm integral equations, whereas the study of parabolic and hyperbolic differential e
12#
發(fā)表于 2025-3-23 17:23:10 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:20 | 只看該作者
Introduction,An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well.
14#
發(fā)表于 2025-3-23 22:50:58 | 只看該作者
15#
發(fā)表于 2025-3-24 06:00:55 | 只看該作者
16#
發(fā)表于 2025-3-24 08:54:57 | 只看該作者
17#
發(fā)表于 2025-3-24 12:16:18 | 只看該作者
Singular Integral Equations,An integral equation is called singular if either the range of integration is infinite or the kernel has singularities within the range of integration. Such equations occur rather frequently in mathematical physics and possess very unusual properties.
18#
發(fā)表于 2025-3-24 14:53:59 | 只看該作者
Integral Transform Methods,The integral transform methods are of great value in the treatment of integral equations, especially the singular integral equations.
19#
發(fā)表于 2025-3-24 21:00:08 | 只看該作者
20#
發(fā)表于 2025-3-24 23:59:10 | 只看該作者
http://image.papertrans.cn/l/image/586327.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安溪县| 祁东县| 山西省| 泸水县| 寿阳县| 定襄县| 临西县| 满城县| 卫辉市| 阿荣旗| 合阳县| 县级市| 京山县| 青龙| 尼勒克县| 聂荣县| 滕州市| 南开区| 会东县| 平湖市| 长武县| 怀化市| 陇川县| 涿州市| 竹溪县| 兴仁县| 收藏| 永定县| 教育| 深泽县| 陵川县| 双流县| 柳林县| 勃利县| 九龙县| 丰台区| 襄汾县| 安宁市| 谷城县| 上杭县| 建平县|