找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers; Yuriy Povstenko Book 2015 Springer International Publishing Switze

[復(fù)制鏈接]
查看: 40038|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:16:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers
編輯Yuriy Povstenko
視頻videohttp://file.papertrans.cn/587/586315/586315.mp4
概述Presents the first comprehensive resource on the fractional diffusion-wave equation.Explores connections between different physical theories.Includes a wealth of figures illustrating the characteristi
圖書封面Titlebook: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers;  Yuriy Povstenko Book 2015 Springer International Publishing Switze
描述.This book systematically presents solutions to the linear time-fractional diffusion-wave equation.?It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “l(fā)ong-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates..The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and fractals for graduate and postgraduate students. The volume will also serve as a valuable reference guide for specialists working in applied mathematics, physics, geophysics and the eng
出版日期Book 2015
關(guān)鍵詞Caputo derivative; Fractional calculus; Integral transforms; Mittag-Leffler function; diffusion-wave equ
版次1
doihttps://doi.org/10.1007/978-3-319-17954-4
isbn_softcover978-3-319-37349-2
isbn_ebook978-3-319-17954-4
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers影響因子(影響力)




書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers影響因子(影響力)學(xué)科排名




書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers網(wǎng)絡(luò)公開度




書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers被引頻次




書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers被引頻次學(xué)科排名




書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers年度引用




書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers年度引用學(xué)科排名




書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers讀者反饋




書目名稱Linear Fractional Diffusion-Wave Equation for Scientists and Engineers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:52:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:17:01 | 只看該作者
地板
發(fā)表于 2025-3-22 07:18:36 | 只看該作者
eutic potential influence at some stage the biochemical mechanism in the hepatocytes. Model compounds were selected to study biochemical/molecular changes produced by environmental chemicals. The effect of Actinomycin-D and the strongly hepatotoxic and carcinogenic diethyl-nitroseamine (DENA) was us
5#
發(fā)表于 2025-3-22 09:20:19 | 只看該作者
6#
發(fā)表于 2025-3-22 16:27:28 | 只看該作者
7#
發(fā)表于 2025-3-22 18:56:48 | 只看該作者
8#
發(fā)表于 2025-3-23 00:50:06 | 只看該作者
Yuriy Povstenko, have proven to be immensely useful tools for the investigation of signal transduction pathways. The degree of identity which underlies the intracellular signal transduction pathways of organisms as diverse as . and the laboratory mouse (.) is reassuring, and suggests that the information which has
9#
發(fā)表于 2025-3-23 01:51:55 | 只看該作者
10#
發(fā)表于 2025-3-23 06:22:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐县| 萝北县| 烟台市| 鄱阳县| 青浦区| 鱼台县| 颍上县| 略阳县| 建昌县| 渝中区| 历史| 郸城县| 常山县| 清镇市| 河间市| 上饶市| 丰城市| 通许县| 灯塔市| 泾川县| 乳源| 泰州市| 宿州市| 亚东县| 太湖县| 云浮市| 张掖市| 讷河市| 曲沃县| 庆安县| 襄汾县| 枣强县| 韶山市| 沙坪坝区| 福鼎市| 林甸县| 陆良县| 澄江县| 革吉县| 宜宾市| 盐边县|