找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations and Group Theory from Riemann to Poincare; Jeremy Gray Book 19861st edition Birkh?user Boston 1986 ordinary differe

[復(fù)制鏈接]
樓主: 呻吟
11#
發(fā)表于 2025-3-23 11:29:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:19:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:30 | 只看該作者
Algebraic Solutions to a Differential Equation,n the 1870’s and 1880’s. First, Schwarz solved the problem for the hypergeometric equation. Then Fuchs solved it for the general second-order equation by reducing it to a problem in invariant theory and solving that problem by . means. Gordan later solved the invariant theory problem directly. But F
14#
發(fā)表于 2025-3-24 02:16:41 | 只看該作者
15#
發(fā)表于 2025-3-24 06:21:43 | 只看該作者
Some Algebraic Curves,erent guises as: the 28 bi-tangents to a quartic curve, the study of a Riemann surface of genus 3 and its group of automorphisms, and the reduction of the modular equation of degree 8. These studies, which began separately, were drawn together by Klein in 1878 and proved crucial to his discovery of
16#
發(fā)表于 2025-3-24 06:51:41 | 只看該作者
Automorphic Functions,phic functions. These developments brought together the theory of linear differential equations and the group-theoretic approach to the study of Riemann surfaces, so this account draws on all of the preceding material. It begins with a significant stage intermediate between the embryonic general the
17#
發(fā)表于 2025-3-24 13:42:36 | 只看該作者
https://doi.org/10.1007/978-1-4899-6672-8ordinary differential equations
18#
發(fā)表于 2025-3-24 17:31:37 | 只看該作者
http://image.papertrans.cn/l/image/586303.jpg
19#
發(fā)表于 2025-3-24 21:01:45 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:46 | 只看該作者
Overview: 978-1-4899-6672-8
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和顺县| 二连浩特市| 四会市| 达尔| 石景山区| 铜川市| 色达县| 通山县| 亳州市| 湖南省| 巴林左旗| 金沙县| 新昌县| 屯门区| 安岳县| 鲜城| 胶州市| 和硕县| 绩溪县| 罗源县| 思茅市| 内丘县| 金乡县| 崇信县| 呼玛县| 隆回县| 华池县| 稷山县| 福建省| 巴中市| 内江市| 陆川县| 华宁县| 景谷| 绍兴市| 茶陵县| 牡丹江市| 正定县| 兴隆县| 花莲市| 溧水县|