找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Chaos; Karl-G. Grosse-Erdmann,Alfred Peris Manguillot Textbook 2011 Springer-Verlag London Limited 2011 Chaos.Dynamical systems.Hyp

[復(fù)制鏈接]
樓主: chondrocyte
41#
發(fā)表于 2025-3-28 18:40:23 | 只看該作者
42#
發(fā)表于 2025-3-28 19:59:08 | 只看該作者
43#
發(fā)表于 2025-3-28 23:49:36 | 只看該作者
44#
發(fā)表于 2025-3-29 04:46:08 | 只看該作者
45#
發(fā)表于 2025-3-29 07:51:41 | 只看該作者
Hypercyclic and chaotic operatorsis shown that every hypercyclic operator possesses a dense subspace all of whose nonzero vectors are hypercyclic (the Herrero–Bourdon theorem), and that linear dynamics can be as complicated as nonlinear dynamics. We begin the chapter with an introduction to Fréchet spaces since they provide the setting for some important chaotic operators.
46#
發(fā)表于 2025-3-29 13:33:38 | 只看該作者
Connectedness arguments in linear dynamics that every multi-hypercyclic operator is hypercyclic, the León–Müller theorem that any unimodular multiple of a hypercyclic operator is hypercyclic, and the Conejero–Müller–Peris theorem that every operator in a hypercyclic semigroup is hypercyclic.
47#
發(fā)表于 2025-3-29 16:56:02 | 只看該作者
Existence of hypercyclic operatorse set of hypercyclic operators in two ways: it forms a dense set in the space of all operators when endowed with the strong operator topology; and it is shown that any linearly independent sequence of vectors appears as the orbit under a hypercyclic operator.
48#
發(fā)表于 2025-3-29 23:42:49 | 只看該作者
49#
發(fā)表于 2025-3-30 01:38:40 | 只看該作者
Hypercyclic subspacese existence of hypercyclic subspaces. The first proof provides an explicit construction via basic sequences, the second one relies on the study of left-multiplication operators. We also obtain conditions that prevent the existence of hypercyclic subspaces; as an application we show that Rolewicz’s operators do not have hypercyclic subspaces.
50#
發(fā)表于 2025-3-30 07:03:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三穗县| 永新县| 泸州市| 察哈| 正安县| 鄂托克前旗| 富宁县| 昌平区| 铜山县| 闽侯县| 和龙市| 白山市| 皮山县| 革吉县| 鱼台县| 铜川市| 京山县| 西昌市| 平罗县| 县级市| 革吉县| 东至县| 农安县| 中卫市| 沂源县| 巴林右旗| 屯门区| 德阳市| 长春市| 化隆| 晋宁县| 广西| 松滋市| 周至县| 宁河县| 武冈市| 吴堡县| 辽中县| 新丰县| 墨脱县| 改则县|