找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Chaos; Karl-G. Grosse-Erdmann,Alfred Peris Manguillot Textbook 2011 Springer-Verlag London Limited 2011 Chaos.Dynamical systems.Hyp

[復制鏈接]
樓主: chondrocyte
41#
發(fā)表于 2025-3-28 18:40:23 | 只看該作者
42#
發(fā)表于 2025-3-28 19:59:08 | 只看該作者
43#
發(fā)表于 2025-3-28 23:49:36 | 只看該作者
44#
發(fā)表于 2025-3-29 04:46:08 | 只看該作者
45#
發(fā)表于 2025-3-29 07:51:41 | 只看該作者
Hypercyclic and chaotic operatorsis shown that every hypercyclic operator possesses a dense subspace all of whose nonzero vectors are hypercyclic (the Herrero–Bourdon theorem), and that linear dynamics can be as complicated as nonlinear dynamics. We begin the chapter with an introduction to Fréchet spaces since they provide the setting for some important chaotic operators.
46#
發(fā)表于 2025-3-29 13:33:38 | 只看該作者
Connectedness arguments in linear dynamics that every multi-hypercyclic operator is hypercyclic, the León–Müller theorem that any unimodular multiple of a hypercyclic operator is hypercyclic, and the Conejero–Müller–Peris theorem that every operator in a hypercyclic semigroup is hypercyclic.
47#
發(fā)表于 2025-3-29 16:56:02 | 只看該作者
Existence of hypercyclic operatorse set of hypercyclic operators in two ways: it forms a dense set in the space of all operators when endowed with the strong operator topology; and it is shown that any linearly independent sequence of vectors appears as the orbit under a hypercyclic operator.
48#
發(fā)表于 2025-3-29 23:42:49 | 只看該作者
49#
發(fā)表于 2025-3-30 01:38:40 | 只看該作者
Hypercyclic subspacese existence of hypercyclic subspaces. The first proof provides an explicit construction via basic sequences, the second one relies on the study of left-multiplication operators. We also obtain conditions that prevent the existence of hypercyclic subspaces; as an application we show that Rolewicz’s operators do not have hypercyclic subspaces.
50#
發(fā)表于 2025-3-30 07:03:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
泾源县| 大足县| 昌江| 普定县| 牡丹江市| 永平县| 白山市| 佛学| 宜黄县| 盖州市| 金阳县| 湖州市| 五指山市| 闸北区| 东阳市| 寿宁县| 丁青县| 林甸县| 涡阳县| 思南县| 鄂州市| 桃园县| 海伦市| 建平县| 丽水市| 新乡市| 柘城县| 当阳市| 剑河县| 罗甸县| 桃源县| 阿拉善盟| 惠州市| 黄平县| 宝丰县| 高唐县| 沅陵县| 阜宁县| 沈阳市| 五常市| 榕江县|