找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra with Python; Theory and Applicati Makoto Tsukada,Yuji Kobayashi,Masato Noguchi Textbook 2023 The Editor(s) (if applicable) a

[復制鏈接]
樓主: 挑染
11#
發(fā)表于 2025-3-23 10:45:34 | 只看該作者
Inner Product and Fourier Expansion,In this chapter, we consider a scalar-valued binary operation on a linear space called an inner product. It leads to the concepts of the length of a vector and the orthogonality between vectors, which give to a linear space the structure of Euclidean geometry. Also, we learn the meaning of orthogonality between functions in a function space.
12#
發(fā)表于 2025-3-23 17:46:11 | 只看該作者
13#
發(fā)表于 2025-3-23 21:06:56 | 只看該作者
14#
發(fā)表于 2025-3-24 02:00:35 | 只看該作者
Jordan Normal Form and Spectrum, arbitrary matrices not necessarily diagonalizable. We explain how to compute them in Python for large matrices which may be hard and cumbersome using only paper and pencil. We also make a program which generates classroom or examination problems.
15#
發(fā)表于 2025-3-24 04:59:26 | 只看該作者
16#
發(fā)表于 2025-3-24 08:32:16 | 只看該作者
17#
發(fā)表于 2025-3-24 14:35:34 | 只看該作者
18#
發(fā)表于 2025-3-24 17:58:07 | 只看該作者
Makoto Tsukada,Yuji Kobayashi,Hiroshi Kaneko,Sin-Ei Takahasi,Kiyoshi Shirayanagi,Masato Noguchio interview forms does not really differ fundamentally. In fact, quite the opposite applies: central themes in both methodological traditions include the problems of gaining access to the elite or to experts (particularly at a high level) as well as the specifics of interaction and the actual interv
19#
發(fā)表于 2025-3-24 20:01:53 | 只看該作者
20#
發(fā)表于 2025-3-25 01:20:15 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 00:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
开远市| 阳江市| 汉阴县| 济南市| 南华县| 宿松县| 尉氏县| 屯留县| 讷河市| 甘泉县| 高密市| 台中县| 高碑店市| 泊头市| 盈江县| 双鸭山市| 门头沟区| 麻栗坡县| 巴中市| 沈阳市| 高州市| 体育| 韶关市| 肃宁县| 凭祥市| 北辰区| 平利县| 兴隆县| 红安县| 丰都县| 南投县| 秦安县| 大宁县| 田林县| 广宁县| 开阳县| 永靖县| 河北区| 辽宁省| 承德县| 高雄县|